Cargando…

Self-Adjusting Ant Colony Optimization Based on Information Entropy for Detecting Epistatic Interactions

The epistatic interactions of single nucleotide polymorphisms (SNPs) are considered to be an important factor in determining the susceptibility of individuals to complex diseases. Although many methods have been proposed to detect such interactions, the development of detection algorithm is still on...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Boxin, Zhao, Yuhai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409693/
https://www.ncbi.nlm.nih.gov/pubmed/30717303
http://dx.doi.org/10.3390/genes10020114
Descripción
Sumario:The epistatic interactions of single nucleotide polymorphisms (SNPs) are considered to be an important factor in determining the susceptibility of individuals to complex diseases. Although many methods have been proposed to detect such interactions, the development of detection algorithm is still ongoing due to the computational burden in large-scale association studies. In this paper, to deal with the intensive computing problem of detecting epistatic interactions in large-scale datasets, a self-adjusting ant colony optimization based on information entropy (IEACO) is proposed. The algorithm can automatically self-adjust the path selection strategy according to the real-time information entropy. The performance of IEACO is compared with that of ant colony optimization (ACO), AntEpiSeeker, AntMiner, and epiACO on a set of simulated datasets and a real genome-wide dataset. The results of extensive experiments show that the proposed method is superior to the other methods.