Cargando…

Eosinophilic Upper Airway Inflammation in a Murine Model Using an Adoptive Transfer System Induces Hyposmia and Epithelial Layer Injury with Convex Lesions

Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a refractory upper airway disease, accompanied mainly by eosinophilia and/or asthma. In addition, the disease correlates with a high rate of hyposmia, following a marked infiltration of eosinophils into the inflamed site, the paranasal...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanda, Akira, Kondo, Kenji, Hosaka, Naoki, Kobayashi, Yoshiki, Bui, Dan Van, Yun, Yasutaka, Suzuki, Kensuke, Sawada, Shunsuke, Asako, Mikiya, Nakamura, Akihiko, Tomoda, Koichi, Sakata, Yoshiko, Tsuta, Koji, Dombrowicz, David, Kawauchi, Hideyuki, Fujieda, Shigeharu, Iwai, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409781/
https://www.ncbi.nlm.nih.gov/pubmed/30764556
http://dx.doi.org/10.3390/medsci7020022
Descripción
Sumario:Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a refractory upper airway disease, accompanied mainly by eosinophilia and/or asthma. In addition, the disease correlates with a high rate of hyposmia, following a marked infiltration of eosinophils into the inflamed site, the paranasal sinus. Although eosinophils are known to contribute to the development of hyposmia and CRSwNP pathology, the underlying mechanisms remain unclear. This study aimed to investigate whether eosinophilic upper airway inflammation induces hyposmia and CRSwNP in a murine model using an adoptive transfer system. Methods: To induce eosinophilic rhinosinusitis, splenocytes, including a high proportion (over 50%) of activated eosinophils (SPLhEos), were collected from interleukin-5 transgenic mice following double intraperitoneal injections of antigens, such as ovalbumin, house dust mite, or fungus. Activated SPLhEos with corresponding antigens were then transferred into the nasal cavity of recipient mice, which were sensitized and challenged by the corresponding antigen four times per week. Olfactory function, histopathological, and computed tomography (CT) analyses were performed 2 days after the final transfer of eosinophils. Results: Hyposmia was induced significantly in mice that received SPLhEos transfer compared with healthy and allergic mice, but it did not promote morphological alteration of the paranasal sinus. Pathological analysis revealed that epithelial layer injury and metaplasia similar to polyps, with prominent eosinophil infiltration, was induced in recipient tissue. However, there was no nasal polyp development with interstitial edema that was similar to those recognized in human chronic rhinosinusitis. Conclusions: This study supports the previously unsuspected contribution of eosinophils to CRS development in the murine model and suggests that murine-activated eosinophilic splenocytes contribute to the development of hyposmia due to more mucosal inflammation than physical airway obstruction and epithelial layer injury with convex lesions.