Cargando…
The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a
Here we explored the mechanism of R-loop formation and DNA cleavage by type V CRISPR Cas12a (formerly known as Cpf1). We first used a single-molecule magnetic tweezers (MT) assay to show that R-loop formation by Lachnospiraceae bacterium ND2006 Cas12a is significantly enhanced by negative DNA superc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409811/ https://www.ncbi.nlm.nih.gov/pubmed/30813348 http://dx.doi.org/10.3390/genes10020169 |
_version_ | 1783402073416531968 |
---|---|
author | van Aelst, Kara Martínez-Santiago, Carlos J. Cross, Stephen J. Szczelkun, Mark D. |
author_facet | van Aelst, Kara Martínez-Santiago, Carlos J. Cross, Stephen J. Szczelkun, Mark D. |
author_sort | van Aelst, Kara |
collection | PubMed |
description | Here we explored the mechanism of R-loop formation and DNA cleavage by type V CRISPR Cas12a (formerly known as Cpf1). We first used a single-molecule magnetic tweezers (MT) assay to show that R-loop formation by Lachnospiraceae bacterium ND2006 Cas12a is significantly enhanced by negative DNA supercoiling, as observed previously with Streptococcus thermophilus DGCC7710 CRISPR3 Cas9. Consistent with the MT data, the apparent rate of cleavage of supercoiled plasmid DNA was observed to be >50-fold faster than the apparent rates for linear DNA or nicked circular DNA because of topology-dependent differences in R-loop formation kinetics. Taking the differences into account, the cleavage data for all substrates can be fitted with the same apparent rate constants for the two strand-cleavage steps, with the first event >15-fold faster than the second. By independently following the ensemble cleavage of the non-target strand (NTS) and target strand (TS), we could show that the faster rate is due to NTS cleavage, the slower rate due to TS cleavage, as expected from previous studies. |
format | Online Article Text |
id | pubmed-6409811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64098112019-03-26 The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a van Aelst, Kara Martínez-Santiago, Carlos J. Cross, Stephen J. Szczelkun, Mark D. Genes (Basel) Article Here we explored the mechanism of R-loop formation and DNA cleavage by type V CRISPR Cas12a (formerly known as Cpf1). We first used a single-molecule magnetic tweezers (MT) assay to show that R-loop formation by Lachnospiraceae bacterium ND2006 Cas12a is significantly enhanced by negative DNA supercoiling, as observed previously with Streptococcus thermophilus DGCC7710 CRISPR3 Cas9. Consistent with the MT data, the apparent rate of cleavage of supercoiled plasmid DNA was observed to be >50-fold faster than the apparent rates for linear DNA or nicked circular DNA because of topology-dependent differences in R-loop formation kinetics. Taking the differences into account, the cleavage data for all substrates can be fitted with the same apparent rate constants for the two strand-cleavage steps, with the first event >15-fold faster than the second. By independently following the ensemble cleavage of the non-target strand (NTS) and target strand (TS), we could show that the faster rate is due to NTS cleavage, the slower rate due to TS cleavage, as expected from previous studies. MDPI 2019-02-22 /pmc/articles/PMC6409811/ /pubmed/30813348 http://dx.doi.org/10.3390/genes10020169 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article van Aelst, Kara Martínez-Santiago, Carlos J. Cross, Stephen J. Szczelkun, Mark D. The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a |
title | The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a |
title_full | The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a |
title_fullStr | The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a |
title_full_unstemmed | The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a |
title_short | The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a |
title_sort | effect of dna topology on observed rates of r-loop formation and dna strand cleavage by crispr cas12a |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409811/ https://www.ncbi.nlm.nih.gov/pubmed/30813348 http://dx.doi.org/10.3390/genes10020169 |
work_keys_str_mv | AT vanaelstkara theeffectofdnatopologyonobservedratesofrloopformationanddnastrandcleavagebycrisprcas12a AT martinezsantiagocarlosj theeffectofdnatopologyonobservedratesofrloopformationanddnastrandcleavagebycrisprcas12a AT crossstephenj theeffectofdnatopologyonobservedratesofrloopformationanddnastrandcleavagebycrisprcas12a AT szczelkunmarkd theeffectofdnatopologyonobservedratesofrloopformationanddnastrandcleavagebycrisprcas12a AT vanaelstkara effectofdnatopologyonobservedratesofrloopformationanddnastrandcleavagebycrisprcas12a AT martinezsantiagocarlosj effectofdnatopologyonobservedratesofrloopformationanddnastrandcleavagebycrisprcas12a AT crossstephenj effectofdnatopologyonobservedratesofrloopformationanddnastrandcleavagebycrisprcas12a AT szczelkunmarkd effectofdnatopologyonobservedratesofrloopformationanddnastrandcleavagebycrisprcas12a |