Cargando…
A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data
Single-cell RNA sequencing (scRNA-seq) has recently brought new insight into cell differentiation processes and functional variation in cell subtypes from homogeneous cell populations. A lack of prior knowledge makes unsupervised machine learning methods, such as clustering, suitable for analyzing s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409843/ https://www.ncbi.nlm.nih.gov/pubmed/30700040 http://dx.doi.org/10.3390/genes10020098 |
_version_ | 1783402083274194944 |
---|---|
author | Zhu, Xiaoshu Li, Hong-Dong Xu, Yunpei Guo, Lilu Wu, Fang-Xiang Duan, Guihua Wang, Jianxin |
author_facet | Zhu, Xiaoshu Li, Hong-Dong Xu, Yunpei Guo, Lilu Wu, Fang-Xiang Duan, Guihua Wang, Jianxin |
author_sort | Zhu, Xiaoshu |
collection | PubMed |
description | Single-cell RNA sequencing (scRNA-seq) has recently brought new insight into cell differentiation processes and functional variation in cell subtypes from homogeneous cell populations. A lack of prior knowledge makes unsupervised machine learning methods, such as clustering, suitable for analyzing scRNA-seq. However, there are several limitations to overcome, including high dimensionality, clustering result instability, and parameter adjustment complexity. In this study, we propose a method by combining structure entropy and k nearest neighbor to identify cell subpopulations in scRNA-seq data. In contrast to existing clustering methods for identifying cell subtypes, minimized structure entropy results in natural communities without specifying the number of clusters. To investigate the performance of our model, we applied it to eight scRNA-seq datasets and compared our method with three existing methods (nonnegative matrix factorization, single-cell interpretation via multikernel learning, and structural entropy minimization principle). The experimental results showed that our approach achieves, on average, better performance in these datasets compared to the benchmark methods. |
format | Online Article Text |
id | pubmed-6409843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64098432019-03-26 A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data Zhu, Xiaoshu Li, Hong-Dong Xu, Yunpei Guo, Lilu Wu, Fang-Xiang Duan, Guihua Wang, Jianxin Genes (Basel) Article Single-cell RNA sequencing (scRNA-seq) has recently brought new insight into cell differentiation processes and functional variation in cell subtypes from homogeneous cell populations. A lack of prior knowledge makes unsupervised machine learning methods, such as clustering, suitable for analyzing scRNA-seq. However, there are several limitations to overcome, including high dimensionality, clustering result instability, and parameter adjustment complexity. In this study, we propose a method by combining structure entropy and k nearest neighbor to identify cell subpopulations in scRNA-seq data. In contrast to existing clustering methods for identifying cell subtypes, minimized structure entropy results in natural communities without specifying the number of clusters. To investigate the performance of our model, we applied it to eight scRNA-seq datasets and compared our method with three existing methods (nonnegative matrix factorization, single-cell interpretation via multikernel learning, and structural entropy minimization principle). The experimental results showed that our approach achieves, on average, better performance in these datasets compared to the benchmark methods. MDPI 2019-01-29 /pmc/articles/PMC6409843/ /pubmed/30700040 http://dx.doi.org/10.3390/genes10020098 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhu, Xiaoshu Li, Hong-Dong Xu, Yunpei Guo, Lilu Wu, Fang-Xiang Duan, Guihua Wang, Jianxin A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data |
title | A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data |
title_full | A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data |
title_fullStr | A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data |
title_full_unstemmed | A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data |
title_short | A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data |
title_sort | hybrid clustering algorithm for identifying cell types from single-cell rna-seq data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409843/ https://www.ncbi.nlm.nih.gov/pubmed/30700040 http://dx.doi.org/10.3390/genes10020098 |
work_keys_str_mv | AT zhuxiaoshu ahybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT lihongdong ahybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT xuyunpei ahybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT guolilu ahybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT wufangxiang ahybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT duanguihua ahybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT wangjianxin ahybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT zhuxiaoshu hybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT lihongdong hybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT xuyunpei hybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT guolilu hybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT wufangxiang hybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT duanguihua hybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata AT wangjianxin hybridclusteringalgorithmforidentifyingcelltypesfromsinglecellrnaseqdata |