Cargando…
A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data
Single-cell RNA sequencing (scRNA-seq) has recently brought new insight into cell differentiation processes and functional variation in cell subtypes from homogeneous cell populations. A lack of prior knowledge makes unsupervised machine learning methods, such as clustering, suitable for analyzing s...
Autores principales: | Zhu, Xiaoshu, Li, Hong-Dong, Xu, Yunpei, Guo, Lilu, Wu, Fang-Xiang, Duan, Guihua, Wang, Jianxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409843/ https://www.ncbi.nlm.nih.gov/pubmed/30700040 http://dx.doi.org/10.3390/genes10020098 |
Ejemplares similares
-
Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
por: Mahalanabis, Alaina, et al.
Publicado: (2022) -
CellBRF: a feature selection method for single-cell clustering using cell balance and random forest
por: Xu, Yunpei, et al.
Publicado: (2023) -
An active learning approach for clustering single-cell RNA-seq data
por: Lin, Xiang, et al.
Publicado: (2022) -
A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data
por: Srinivasan, Suhas, et al.
Publicado: (2020) -
SC3 - consensus clustering of single-cell RNA-Seq data
por: Kiselev, Vladimir Yu., et al.
Publicado: (2017)