Cargando…
Identification of Genes Involved in Low Temperature-Induced Senescence of Panicle Leaf in Litchi chinensis
Warm winters and hot springs may promote panicle leaf growing and repress floral development. To identify genes potentially involved in litchi panicle leaf senescence, eight RNA-sequencing (RNA-Seq) libraries of the senescing panicle leaves under low temperature (LT) conditions and the developing pa...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409916/ https://www.ncbi.nlm.nih.gov/pubmed/30717231 http://dx.doi.org/10.3390/genes10020111 |
Sumario: | Warm winters and hot springs may promote panicle leaf growing and repress floral development. To identify genes potentially involved in litchi panicle leaf senescence, eight RNA-sequencing (RNA-Seq) libraries of the senescing panicle leaves under low temperature (LT) conditions and the developing panicle leaves under high temperature (HT) conditions were constructed. For each library, 4.78–8.99 × 10(6) clean reads were generated. Digital expression of the genes was compared between the senescing and developing panicle leaves. A total of 6477 upregulated differentially expressed genes (DEGs) (from developing leaves to senescing leaves), and 6318 downregulated DEGs were identified, 158 abscisic acid (ABA)-, 68 ethylene-, 107 indole-3-acetic acid (IAA)-, 27 gibberellic acid (GA)-, 68 cytokinin (CTK)-, 37 salicylic acid (SA)-, and 23 brassinolide (BR)-related DEGs. Confirmation of the RNA-Seq data by quantitative real-time PCR (qRT-PCR) analysis suggested that expression trends of the 10 candidate genes using qRT-PCR were similar to those revealed by RNA-Seq, and a significantly positive correlation between the obtained data from qRT-PCR and RNA-Seq were found, indicating the reliability of our RNA-Seq data. The present studies provided potential genes for the future molecular breeding of new cultivars that can induce panicle leaf senescence and reduce floral abortion under warm climates. |
---|