Cargando…
Complementarity of Matrix- and Nanostructure-Assisted Laser Desorption/Ionization Approaches
In recent years, matrix-assisted laser desorption/ionization (MALDI) has become the main tool for the study of biological macromolecules, such as protein nano-machines, especially in the determination of their molecular masses, structure, and post-translational modifications. A key role in the class...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410089/ https://www.ncbi.nlm.nih.gov/pubmed/30769830 http://dx.doi.org/10.3390/nano9020260 |
Sumario: | In recent years, matrix-assisted laser desorption/ionization (MALDI) has become the main tool for the study of biological macromolecules, such as protein nano-machines, especially in the determination of their molecular masses, structure, and post-translational modifications. A key role in the classical process of desorption and ionization of the sample is played by a matrix, usually a low-molecular weight weak organic acid. Unfortunately, the interpretation of mass spectra in the mass range of below m/z 500 is difficult, and hence the analysis of low molecular weight compounds in a matrix-assisted system is an analytical challenge. Replacing the classical matrix with nanomaterials, e.g., silver nanoparticles, allows improvement of the selectivity and sensitivity of spectrometric measurement of biologically important small molecules. Nowadays, the nanostructure-assisted laser desorption/ionization (NALDI) approach complements the classic MALDI in the field of modern bioanalytics. In particular, the aim of this work is to review the recent advances in MALDI and NALDI approaches. |
---|