Cargando…
Predicting MiRNA-Disease Association by Latent Feature Extraction with Positive Samples
In discovering disease etiology and pathogenesis, the associations between MicroRNAs (miRNAs) and diseases play a critical role. Given known miRNA-disease associations (MDAs), how to uncover potential MDAs is an important problem. To solve this problem, most of the existing methods regard known MDAs...
Autores principales: | Che, Kai, Guo, Maozu, Wang, Chunyu, Liu, Xiaoyan, Chen, Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410147/ https://www.ncbi.nlm.nih.gov/pubmed/30682853 http://dx.doi.org/10.3390/genes10020080 |
Ejemplares similares
-
Identify bilayer modules via pseudo-3D clustering: applications to miRNA-gene bilayer networks
por: Xu, Yungang, et al.
Publicado: (2016) -
Genetic Variants Detection Based on Weighted Sparse Group Lasso
por: Che, Kai, et al.
Publicado: (2020) -
Prediction of miRNA-disease Associations using an Evolutionary Tuned Latent Semantic Analysis
por: Pallez, Denis, et al.
Publicado: (2017) -
The use of miRNA microarrays for the analysis of cancer samples with global miRNA decrease
por: Wu, Di, et al.
Publicado: (2013) -
Integrative Analysis of miRNA-mRNA and miRNA-miRNA Interactions
por: Guo, Li, et al.
Publicado: (2014)