Cargando…
Role of β-Catenin Activation Levels and Fluctuations in Controlling Cell Fate
Cells have developed numerous adaptation mechanisms to external cues by controlling signaling-pathway activity, both qualitatively and quantitatively. The Wnt/β-catenin pathway is a highly conserved signaling pathway involved in many biological processes, including cell proliferation, differentiatio...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410200/ https://www.ncbi.nlm.nih.gov/pubmed/30823613 http://dx.doi.org/10.3390/genes10020176 |
Sumario: | Cells have developed numerous adaptation mechanisms to external cues by controlling signaling-pathway activity, both qualitatively and quantitatively. The Wnt/β-catenin pathway is a highly conserved signaling pathway involved in many biological processes, including cell proliferation, differentiation, somatic cell reprogramming, development, and cancer. The activity of the Wnt/β-catenin pathway and the temporal dynamics of its effector β-catenin are tightly controlled by complex regulations. The latter encompass feedback loops within the pathway (e.g., a negative feedback loop involving Axin2, a β-catenin transcriptional target) and crosstalk interactions with other signaling pathways. Here, we provide a review shedding light on the coupling between Wnt/β-catenin activation levels and fluctuations across processes and cellular systems; in particular, we focus on development, in vitro pluripotency maintenance, and cancer. Possible mechanisms originating Wnt/β-catenin dynamic behaviors and consequently driving different cellular responses are also reviewed, and new avenues for future research are suggested. |
---|