Cargando…
Fabrication of Antireflective Nanostructures on a Transmission Grating Surface Using a One-Step Self-Masking Method
Suppression of Fresnel reflection from diffraction grating surfaces is very important for many optical configurations. In this work, we propose a simple method to fabricate subwavelength structures on fused-silica transmission grating for optical antireflection. The fabrication is a one-step self-ma...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410241/ https://www.ncbi.nlm.nih.gov/pubmed/30717124 http://dx.doi.org/10.3390/nano9020180 |
_version_ | 1783402199594827776 |
---|---|
author | Shao, Ting Tang, Feng Sun, Laixi Ye, Xin He, Junhui Yang, Liming Zheng, Wanguo |
author_facet | Shao, Ting Tang, Feng Sun, Laixi Ye, Xin He, Junhui Yang, Liming Zheng, Wanguo |
author_sort | Shao, Ting |
collection | PubMed |
description | Suppression of Fresnel reflection from diffraction grating surfaces is very important for many optical configurations. In this work, we propose a simple method to fabricate subwavelength structures on fused-silica transmission grating for optical antireflection. The fabrication is a one-step self-masking reaction ion etching (RIE) process without using any masks. According to effective medium theory, random cone-shaped nanopillars which are integrated on the grating surface can act as an antireflective layer. Effects of the nanostructures on the reflection and transmission properties of the grating were investigated through experiments and simulations. The nanostructure surface exhibited excellent antireflection performance, where the reflection of the grating surface was suppressed to zero over a wide range of incident angles. Results also revealed that the etching process can change the duty cycle of the grating, and thus the diffraction orders if there are oblique lateral walls. The simulation results were in good agreement with the experimental ones, which verified our physical comprehension and the corresponding numerical model. The proposed method would offer a low-cost and convenient way to improve the antireflective performance of transmission-diffractive elements. |
format | Online Article Text |
id | pubmed-6410241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64102412019-03-29 Fabrication of Antireflective Nanostructures on a Transmission Grating Surface Using a One-Step Self-Masking Method Shao, Ting Tang, Feng Sun, Laixi Ye, Xin He, Junhui Yang, Liming Zheng, Wanguo Nanomaterials (Basel) Communication Suppression of Fresnel reflection from diffraction grating surfaces is very important for many optical configurations. In this work, we propose a simple method to fabricate subwavelength structures on fused-silica transmission grating for optical antireflection. The fabrication is a one-step self-masking reaction ion etching (RIE) process without using any masks. According to effective medium theory, random cone-shaped nanopillars which are integrated on the grating surface can act as an antireflective layer. Effects of the nanostructures on the reflection and transmission properties of the grating were investigated through experiments and simulations. The nanostructure surface exhibited excellent antireflection performance, where the reflection of the grating surface was suppressed to zero over a wide range of incident angles. Results also revealed that the etching process can change the duty cycle of the grating, and thus the diffraction orders if there are oblique lateral walls. The simulation results were in good agreement with the experimental ones, which verified our physical comprehension and the corresponding numerical model. The proposed method would offer a low-cost and convenient way to improve the antireflective performance of transmission-diffractive elements. MDPI 2019-02-01 /pmc/articles/PMC6410241/ /pubmed/30717124 http://dx.doi.org/10.3390/nano9020180 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Shao, Ting Tang, Feng Sun, Laixi Ye, Xin He, Junhui Yang, Liming Zheng, Wanguo Fabrication of Antireflective Nanostructures on a Transmission Grating Surface Using a One-Step Self-Masking Method |
title | Fabrication of Antireflective Nanostructures on a Transmission Grating Surface Using a One-Step Self-Masking Method |
title_full | Fabrication of Antireflective Nanostructures on a Transmission Grating Surface Using a One-Step Self-Masking Method |
title_fullStr | Fabrication of Antireflective Nanostructures on a Transmission Grating Surface Using a One-Step Self-Masking Method |
title_full_unstemmed | Fabrication of Antireflective Nanostructures on a Transmission Grating Surface Using a One-Step Self-Masking Method |
title_short | Fabrication of Antireflective Nanostructures on a Transmission Grating Surface Using a One-Step Self-Masking Method |
title_sort | fabrication of antireflective nanostructures on a transmission grating surface using a one-step self-masking method |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410241/ https://www.ncbi.nlm.nih.gov/pubmed/30717124 http://dx.doi.org/10.3390/nano9020180 |
work_keys_str_mv | AT shaoting fabricationofantireflectivenanostructuresonatransmissiongratingsurfaceusingaonestepselfmaskingmethod AT tangfeng fabricationofantireflectivenanostructuresonatransmissiongratingsurfaceusingaonestepselfmaskingmethod AT sunlaixi fabricationofantireflectivenanostructuresonatransmissiongratingsurfaceusingaonestepselfmaskingmethod AT yexin fabricationofantireflectivenanostructuresonatransmissiongratingsurfaceusingaonestepselfmaskingmethod AT hejunhui fabricationofantireflectivenanostructuresonatransmissiongratingsurfaceusingaonestepselfmaskingmethod AT yangliming fabricationofantireflectivenanostructuresonatransmissiongratingsurfaceusingaonestepselfmaskingmethod AT zhengwanguo fabricationofantireflectivenanostructuresonatransmissiongratingsurfaceusingaonestepselfmaskingmethod |