Cargando…
Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis
BACKGROUND: Fatty acids (FAs) with a chain length of more than 18 carbon atoms (> C18) are interesting for the production of specialty compounds derived from these FAs. These compounds include free FAs, like erucic acid (C22:1-Δ13), primary fatty alcohols (FOHs), like docosanol (C22:0-FOH), as we...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410506/ https://www.ncbi.nlm.nih.gov/pubmed/30857535 http://dx.doi.org/10.1186/s12934-019-1098-9 |
_version_ | 1783402257270702080 |
---|---|
author | Wenning, Leonie Ejsing, Christer S. David, Florian Sprenger, Richard R. Nielsen, Jens Siewers, Verena |
author_facet | Wenning, Leonie Ejsing, Christer S. David, Florian Sprenger, Richard R. Nielsen, Jens Siewers, Verena |
author_sort | Wenning, Leonie |
collection | PubMed |
description | BACKGROUND: Fatty acids (FAs) with a chain length of more than 18 carbon atoms (> C18) are interesting for the production of specialty compounds derived from these FAs. These compounds include free FAs, like erucic acid (C22:1-Δ13), primary fatty alcohols (FOHs), like docosanol (C22:0-FOH), as well as jojoba-like wax esters (WEs) (C38-WE to C44-WE), which are esters of (very) long-chain FAs and (very) long-chain FOHs. In particular, FAs, FOHs and WEs are used in the production of chemicals, pharmaceuticals and cosmetic products. Jojoba seed oil is highly enriched in diunsaturated WEs with over 70 mol% being composed of C18:1–C24:1 monounsaturated FOH and monounsaturated FA moieties. In this study, we aim for the production of jojoba-like WEs in the yeast Saccharomyces cerevisiae by increasing the amount of very long-chain, monounsaturated FAs and simultaneously expressing enzymes required for WE synthesis. RESULTS: We show that the combined expression of a plant-derived fatty acid elongase (FAE/KCS) from Crambe abyssinica (CaKCS) together with the yeast intrinsic fatty acid desaturase (FAD) Ole1p leads to an increase in C20:1 and C22:1 FAs in S. cerevisiae. We also demonstrate that the best enzyme candidate for C24:1 FA production in S. cerevisiae is a FAE derived from Lunaria annua (LaKCS). The combined overexpression of CaKCS and Ole1p together with a fatty acyl reductase (FAR/FAldhR) from Marinobacter aquaeolei VT8 (MaFAldhR) and a wax synthase (WS) from Simmondsia chinensis (SciWS) in a S. cerevisiae strain, overexpressing a range of other enzymes involved in FA synthesis and elongation, leads to a yeast strain capable of producing high amounts of monounsaturated FOHs (up to C22:1-FOH) as well as diunsaturated WEs (up to C46:2-WE). CONCLUSIONS: Changing the FA profile of the yeast S. cerevisiae towards very long-chain monounsaturated FAs is possible by combined overexpression of endogenous and heterologous enzymes derived from various sources (e.g. a marine copepod or plants). This strategy was used to produce jojoba-like WEs in S. cerevisiae and can potentially be extended towards other commercially interesting products derived from very long-chain FAs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12934-019-1098-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6410506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-64105062019-03-21 Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis Wenning, Leonie Ejsing, Christer S. David, Florian Sprenger, Richard R. Nielsen, Jens Siewers, Verena Microb Cell Fact Research BACKGROUND: Fatty acids (FAs) with a chain length of more than 18 carbon atoms (> C18) are interesting for the production of specialty compounds derived from these FAs. These compounds include free FAs, like erucic acid (C22:1-Δ13), primary fatty alcohols (FOHs), like docosanol (C22:0-FOH), as well as jojoba-like wax esters (WEs) (C38-WE to C44-WE), which are esters of (very) long-chain FAs and (very) long-chain FOHs. In particular, FAs, FOHs and WEs are used in the production of chemicals, pharmaceuticals and cosmetic products. Jojoba seed oil is highly enriched in diunsaturated WEs with over 70 mol% being composed of C18:1–C24:1 monounsaturated FOH and monounsaturated FA moieties. In this study, we aim for the production of jojoba-like WEs in the yeast Saccharomyces cerevisiae by increasing the amount of very long-chain, monounsaturated FAs and simultaneously expressing enzymes required for WE synthesis. RESULTS: We show that the combined expression of a plant-derived fatty acid elongase (FAE/KCS) from Crambe abyssinica (CaKCS) together with the yeast intrinsic fatty acid desaturase (FAD) Ole1p leads to an increase in C20:1 and C22:1 FAs in S. cerevisiae. We also demonstrate that the best enzyme candidate for C24:1 FA production in S. cerevisiae is a FAE derived from Lunaria annua (LaKCS). The combined overexpression of CaKCS and Ole1p together with a fatty acyl reductase (FAR/FAldhR) from Marinobacter aquaeolei VT8 (MaFAldhR) and a wax synthase (WS) from Simmondsia chinensis (SciWS) in a S. cerevisiae strain, overexpressing a range of other enzymes involved in FA synthesis and elongation, leads to a yeast strain capable of producing high amounts of monounsaturated FOHs (up to C22:1-FOH) as well as diunsaturated WEs (up to C46:2-WE). CONCLUSIONS: Changing the FA profile of the yeast S. cerevisiae towards very long-chain monounsaturated FAs is possible by combined overexpression of endogenous and heterologous enzymes derived from various sources (e.g. a marine copepod or plants). This strategy was used to produce jojoba-like WEs in S. cerevisiae and can potentially be extended towards other commercially interesting products derived from very long-chain FAs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12934-019-1098-9) contains supplementary material, which is available to authorized users. BioMed Central 2019-03-11 /pmc/articles/PMC6410506/ /pubmed/30857535 http://dx.doi.org/10.1186/s12934-019-1098-9 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Wenning, Leonie Ejsing, Christer S. David, Florian Sprenger, Richard R. Nielsen, Jens Siewers, Verena Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis |
title | Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis |
title_full | Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis |
title_fullStr | Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis |
title_full_unstemmed | Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis |
title_short | Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis |
title_sort | increasing jojoba-like wax ester production in saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410506/ https://www.ncbi.nlm.nih.gov/pubmed/30857535 http://dx.doi.org/10.1186/s12934-019-1098-9 |
work_keys_str_mv | AT wenningleonie increasingjojobalikewaxesterproductioninsaccharomycescerevisiaebyenhancingverylongchainmonounsaturatedfattyacidsynthesis AT ejsingchristers increasingjojobalikewaxesterproductioninsaccharomycescerevisiaebyenhancingverylongchainmonounsaturatedfattyacidsynthesis AT davidflorian increasingjojobalikewaxesterproductioninsaccharomycescerevisiaebyenhancingverylongchainmonounsaturatedfattyacidsynthesis AT sprengerrichardr increasingjojobalikewaxesterproductioninsaccharomycescerevisiaebyenhancingverylongchainmonounsaturatedfattyacidsynthesis AT nielsenjens increasingjojobalikewaxesterproductioninsaccharomycescerevisiaebyenhancingverylongchainmonounsaturatedfattyacidsynthesis AT siewersverena increasingjojobalikewaxesterproductioninsaccharomycescerevisiaebyenhancingverylongchainmonounsaturatedfattyacidsynthesis |