Cargando…
Pharmacological inhibition of the triggering receptor expressed on myeloid cells‐1 limits reperfusion injury in a porcine model of myocardial infarction
AIMS: Limitation of ischemia/reperfusion injury is a major therapeutic target after acute myocardial infarction (AMI). Toll‐like receptors are implicated in the inflammatory response that occurs during reperfusion. The triggering receptor expressed on myeloid cells (TREM)‐1 acts as an amplifier of t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410538/ https://www.ncbi.nlm.nih.gov/pubmed/28834656 http://dx.doi.org/10.1002/ehf2.12029 |
_version_ | 1783402265209470976 |
---|---|
author | Lemarié, Jérémie Boufenzer, Amir Popovic, Batric Tran, Nguyen Groubatch, Frederique Derive, Marc Labroca, Pierre Barraud, Damien Gibot, Sébastien |
author_facet | Lemarié, Jérémie Boufenzer, Amir Popovic, Batric Tran, Nguyen Groubatch, Frederique Derive, Marc Labroca, Pierre Barraud, Damien Gibot, Sébastien |
author_sort | Lemarié, Jérémie |
collection | PubMed |
description | AIMS: Limitation of ischemia/reperfusion injury is a major therapeutic target after acute myocardial infarction (AMI). Toll‐like receptors are implicated in the inflammatory response that occurs during reperfusion. The triggering receptor expressed on myeloid cells (TREM)‐1 acts as an amplifier of the immune response triggered by toll‐like receptor engagement. We hypothesized that administration of a TREM‐1 inhibitory peptide (LR12) could limit reperfusion injury in a porcine model of AMI. METHODS AND RESULTS: AMI was induced in 15 adult minipigs by a closed‐chest coronary artery occlusion‐reperfusion technique. Animals were randomized to receive LR12 or vehicle before reperfusion (LR12 n = 7, vehicle n = 8), and were monitored during 18 h. AMI altered hemodynamics and cardiac function, as illustrated by a drop of mean arterial pressure, cardiac index, cardiac power index, ejection fraction, and real‐time pressure–volume loop‐derived parameters. TREM‐1 inhibition by LR12 significantly improved these dysfunctions (P < 0.03) and limited infarct size, as assessed by lower creatine phosphokinase and troponin I concentrations (P < 0.005). Pulmonary, renal, and hepatic impairments occurred after AMI and were attenuated by LR12 administration as assessed by a better PaO(2) to FiO(2) ratio, a less positive fluid balance, and lower liver enzymes levels (P < 0.05). CONCLUSION: Inhibition of the TREM‐1 pathway by a synthetic peptide limited myocardial reperfusion injury in a clinically relevant porcine model of AMI. |
format | Online Article Text |
id | pubmed-6410538 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64105382019-03-22 Pharmacological inhibition of the triggering receptor expressed on myeloid cells‐1 limits reperfusion injury in a porcine model of myocardial infarction Lemarié, Jérémie Boufenzer, Amir Popovic, Batric Tran, Nguyen Groubatch, Frederique Derive, Marc Labroca, Pierre Barraud, Damien Gibot, Sébastien ESC Heart Fail Original Research Articles AIMS: Limitation of ischemia/reperfusion injury is a major therapeutic target after acute myocardial infarction (AMI). Toll‐like receptors are implicated in the inflammatory response that occurs during reperfusion. The triggering receptor expressed on myeloid cells (TREM)‐1 acts as an amplifier of the immune response triggered by toll‐like receptor engagement. We hypothesized that administration of a TREM‐1 inhibitory peptide (LR12) could limit reperfusion injury in a porcine model of AMI. METHODS AND RESULTS: AMI was induced in 15 adult minipigs by a closed‐chest coronary artery occlusion‐reperfusion technique. Animals were randomized to receive LR12 or vehicle before reperfusion (LR12 n = 7, vehicle n = 8), and were monitored during 18 h. AMI altered hemodynamics and cardiac function, as illustrated by a drop of mean arterial pressure, cardiac index, cardiac power index, ejection fraction, and real‐time pressure–volume loop‐derived parameters. TREM‐1 inhibition by LR12 significantly improved these dysfunctions (P < 0.03) and limited infarct size, as assessed by lower creatine phosphokinase and troponin I concentrations (P < 0.005). Pulmonary, renal, and hepatic impairments occurred after AMI and were attenuated by LR12 administration as assessed by a better PaO(2) to FiO(2) ratio, a less positive fluid balance, and lower liver enzymes levels (P < 0.05). CONCLUSION: Inhibition of the TREM‐1 pathway by a synthetic peptide limited myocardial reperfusion injury in a clinically relevant porcine model of AMI. John Wiley and Sons Inc. 2015-05-06 /pmc/articles/PMC6410538/ /pubmed/28834656 http://dx.doi.org/10.1002/ehf2.12029 Text en © 2015 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Articles Lemarié, Jérémie Boufenzer, Amir Popovic, Batric Tran, Nguyen Groubatch, Frederique Derive, Marc Labroca, Pierre Barraud, Damien Gibot, Sébastien Pharmacological inhibition of the triggering receptor expressed on myeloid cells‐1 limits reperfusion injury in a porcine model of myocardial infarction |
title | Pharmacological inhibition of the triggering receptor expressed on myeloid cells‐1 limits reperfusion injury in a porcine model of myocardial infarction |
title_full | Pharmacological inhibition of the triggering receptor expressed on myeloid cells‐1 limits reperfusion injury in a porcine model of myocardial infarction |
title_fullStr | Pharmacological inhibition of the triggering receptor expressed on myeloid cells‐1 limits reperfusion injury in a porcine model of myocardial infarction |
title_full_unstemmed | Pharmacological inhibition of the triggering receptor expressed on myeloid cells‐1 limits reperfusion injury in a porcine model of myocardial infarction |
title_short | Pharmacological inhibition of the triggering receptor expressed on myeloid cells‐1 limits reperfusion injury in a porcine model of myocardial infarction |
title_sort | pharmacological inhibition of the triggering receptor expressed on myeloid cells‐1 limits reperfusion injury in a porcine model of myocardial infarction |
topic | Original Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410538/ https://www.ncbi.nlm.nih.gov/pubmed/28834656 http://dx.doi.org/10.1002/ehf2.12029 |
work_keys_str_mv | AT lemariejeremie pharmacologicalinhibitionofthetriggeringreceptorexpressedonmyeloidcells1limitsreperfusioninjuryinaporcinemodelofmyocardialinfarction AT boufenzeramir pharmacologicalinhibitionofthetriggeringreceptorexpressedonmyeloidcells1limitsreperfusioninjuryinaporcinemodelofmyocardialinfarction AT popovicbatric pharmacologicalinhibitionofthetriggeringreceptorexpressedonmyeloidcells1limitsreperfusioninjuryinaporcinemodelofmyocardialinfarction AT trannguyen pharmacologicalinhibitionofthetriggeringreceptorexpressedonmyeloidcells1limitsreperfusioninjuryinaporcinemodelofmyocardialinfarction AT groubatchfrederique pharmacologicalinhibitionofthetriggeringreceptorexpressedonmyeloidcells1limitsreperfusioninjuryinaporcinemodelofmyocardialinfarction AT derivemarc pharmacologicalinhibitionofthetriggeringreceptorexpressedonmyeloidcells1limitsreperfusioninjuryinaporcinemodelofmyocardialinfarction AT labrocapierre pharmacologicalinhibitionofthetriggeringreceptorexpressedonmyeloidcells1limitsreperfusioninjuryinaporcinemodelofmyocardialinfarction AT barrauddamien pharmacologicalinhibitionofthetriggeringreceptorexpressedonmyeloidcells1limitsreperfusioninjuryinaporcinemodelofmyocardialinfarction AT gibotsebastien pharmacologicalinhibitionofthetriggeringreceptorexpressedonmyeloidcells1limitsreperfusioninjuryinaporcinemodelofmyocardialinfarction |