Cargando…
Metalearners for estimating heterogeneous treatment effects using machine learning
There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of metaalgorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the condition...
Autores principales: | Künzel, Sören R., Sekhon, Jasjeet S., Bickel, Peter J., Yu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410831/ https://www.ncbi.nlm.nih.gov/pubmed/30770453 http://dx.doi.org/10.1073/pnas.1804597116 |
Ejemplares similares
-
Exploiting regulatory heterogeneity to systematically identify enhancers with high accuracy
por: Arbel, Hamutal, et al.
Publicado: (2019) -
Comparing continual task learning in minds and machines
por: Flesch, Timo, et al.
Publicado: (2018) -
Robust predictions of specialized metabolism genes through machine learning
por: Moore, Bethany M., et al.
Publicado: (2019) -
DRUG-NEM: Optimizing drug combinations using single-cell perturbation response to account for intratumoral heterogeneity
por: Anchang, Benedict, et al.
Publicado: (2018) -
NETSeq reveals heterogeneous nucleotide incorporation by RNA polymerase I
por: Clarke, Andrew M., et al.
Publicado: (2018)