Cargando…

Nanometer-accuracy distance measurements between fluorophores at the single-molecule level

Light microscopy is a powerful tool for probing the conformations of molecular machines at the single-molecule level. Single-molecule Förster resonance energy transfer can measure intramolecular distance changes of single molecules in the range of 2 to 8 nm. However, current superresolution measurem...

Descripción completa

Detalles Bibliográficos
Autores principales: Niekamp, Stefan, Sung, Jongmin, Huynh, Walter, Bhabha, Gira, Vale, Ronald D., Stuurman, Nico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410877/
https://www.ncbi.nlm.nih.gov/pubmed/30770448
http://dx.doi.org/10.1073/pnas.1815826116
_version_ 1783402319199600640
author Niekamp, Stefan
Sung, Jongmin
Huynh, Walter
Bhabha, Gira
Vale, Ronald D.
Stuurman, Nico
author_facet Niekamp, Stefan
Sung, Jongmin
Huynh, Walter
Bhabha, Gira
Vale, Ronald D.
Stuurman, Nico
author_sort Niekamp, Stefan
collection PubMed
description Light microscopy is a powerful tool for probing the conformations of molecular machines at the single-molecule level. Single-molecule Förster resonance energy transfer can measure intramolecular distance changes of single molecules in the range of 2 to 8 nm. However, current superresolution measurements become error-prone below 25 nm. Thus, new single-molecule methods are needed for measuring distances in the 8- to 25-nm range. Here, we describe methods that utilize information about localization and imaging errors to measure distances between two different color fluorophores with ∼1-nm accuracy at distances >2 nm. These techniques can be implemented in high throughput using a standard total internal reflection fluorescence microscope and open-source software. We applied our two-color localization method to uncover an unexpected ∼4-nm nucleotide-dependent conformational change in the coiled-coil “stalk” of the motor protein dynein. We anticipate that these methods will be useful for high-accuracy distance measurements of single molecules over a wide range of length scales.
format Online
Article
Text
id pubmed-6410877
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-64108772019-03-13 Nanometer-accuracy distance measurements between fluorophores at the single-molecule level Niekamp, Stefan Sung, Jongmin Huynh, Walter Bhabha, Gira Vale, Ronald D. Stuurman, Nico Proc Natl Acad Sci U S A PNAS Plus Light microscopy is a powerful tool for probing the conformations of molecular machines at the single-molecule level. Single-molecule Förster resonance energy transfer can measure intramolecular distance changes of single molecules in the range of 2 to 8 nm. However, current superresolution measurements become error-prone below 25 nm. Thus, new single-molecule methods are needed for measuring distances in the 8- to 25-nm range. Here, we describe methods that utilize information about localization and imaging errors to measure distances between two different color fluorophores with ∼1-nm accuracy at distances >2 nm. These techniques can be implemented in high throughput using a standard total internal reflection fluorescence microscope and open-source software. We applied our two-color localization method to uncover an unexpected ∼4-nm nucleotide-dependent conformational change in the coiled-coil “stalk” of the motor protein dynein. We anticipate that these methods will be useful for high-accuracy distance measurements of single molecules over a wide range of length scales. National Academy of Sciences 2019-03-05 2019-02-15 /pmc/articles/PMC6410877/ /pubmed/30770448 http://dx.doi.org/10.1073/pnas.1815826116 Text en Copyright © 2019 the Author(s). Published by PNAS. http://creativecommons.org/licenses/by/4.0/ This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) .
spellingShingle PNAS Plus
Niekamp, Stefan
Sung, Jongmin
Huynh, Walter
Bhabha, Gira
Vale, Ronald D.
Stuurman, Nico
Nanometer-accuracy distance measurements between fluorophores at the single-molecule level
title Nanometer-accuracy distance measurements between fluorophores at the single-molecule level
title_full Nanometer-accuracy distance measurements between fluorophores at the single-molecule level
title_fullStr Nanometer-accuracy distance measurements between fluorophores at the single-molecule level
title_full_unstemmed Nanometer-accuracy distance measurements between fluorophores at the single-molecule level
title_short Nanometer-accuracy distance measurements between fluorophores at the single-molecule level
title_sort nanometer-accuracy distance measurements between fluorophores at the single-molecule level
topic PNAS Plus
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410877/
https://www.ncbi.nlm.nih.gov/pubmed/30770448
http://dx.doi.org/10.1073/pnas.1815826116
work_keys_str_mv AT niekampstefan nanometeraccuracydistancemeasurementsbetweenfluorophoresatthesinglemoleculelevel
AT sungjongmin nanometeraccuracydistancemeasurementsbetweenfluorophoresatthesinglemoleculelevel
AT huynhwalter nanometeraccuracydistancemeasurementsbetweenfluorophoresatthesinglemoleculelevel
AT bhabhagira nanometeraccuracydistancemeasurementsbetweenfluorophoresatthesinglemoleculelevel
AT valeronaldd nanometeraccuracydistancemeasurementsbetweenfluorophoresatthesinglemoleculelevel
AT stuurmannico nanometeraccuracydistancemeasurementsbetweenfluorophoresatthesinglemoleculelevel