Cargando…
P-curve won’t do your laundry, but it will distinguish replicable from non-replicable findings in observational research: Comment on Bruns & Ioannidis (2016)
p-curve, the distribution of significant p-values, can be analyzed to assess if the findings have evidential value, whether p-hacking and file-drawering can be ruled out as the sole explanations for them. Bruns and Ioannidis (2016) have proposed p-curve cannot examine evidential value with observati...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411107/ https://www.ncbi.nlm.nih.gov/pubmed/30856227 http://dx.doi.org/10.1371/journal.pone.0213454 |
Sumario: | p-curve, the distribution of significant p-values, can be analyzed to assess if the findings have evidential value, whether p-hacking and file-drawering can be ruled out as the sole explanations for them. Bruns and Ioannidis (2016) have proposed p-curve cannot examine evidential value with observational data. Their discussion confuses false-positive findings with confounded ones, failing to distinguish correlation from causation. We demonstrate this important distinction by showing that a confounded but real, hence replicable association, gun ownership and number of sexual partners, leads to a right-skewed p-curve, while a false-positive one, respondent ID number and trust in the supreme court, leads to a flat p-curve. P-curve can distinguish between replicable and non-replicable findings. The observational nature of the data is not consequential. |
---|