Cargando…
High-Order Spatial Simulation Using Legendre-Like Orthogonal Splines
High-order sequential simulation techniques for complex non-Gaussian spatially distributed variables have been developed over the last few years. The high-order simulation approach does not require any transformation of initial data and makes no assumptions about any probability distribution functio...
Autores principales: | Minniakhmetov, Ilnur, Dimitrakopoulos, Roussos, Godoy, Marcelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411132/ https://www.ncbi.nlm.nih.gov/pubmed/30931017 http://dx.doi.org/10.1007/s11004-018-9741-2 |
Ejemplares similares
-
A New Computational Model of High-Order Stochastic Simulation Based on Spatial Legendre Moments
por: Yao, Lingqing, et al.
Publicado: (2018) -
A New Non-stationary High-order Spatial Sequential Simulation Method
por: Haji Abolhassani, Amir Abbas, et al.
Publicado: (2022) -
High-Order Sequential Simulation via Statistical Learning in Reproducing Kernel Hilbert Space
por: Yao, Lingqing, et al.
Publicado: (2019) -
Training Image Free High-Order Stochastic Simulation Based on Aggregated Kernel Statistics
por: Yao, Lingqing, et al.
Publicado: (2021) -
Predicting Longitudinal Traits Derived from High-Throughput Phenomics in Contrasting Environments Using Genomic Legendre Polynomials and B-Splines
por: Momen, Mehdi, et al.
Publicado: (2019)