Cargando…
Hyperbolic systems with non-diagonalisable principal part and variable multiplicities, I: well-posedness
In this paper we analyse the well-posedness of the Cauchy problem for a rather general class of hyperbolic systems with space-time dependent coefficients and with multiple characteristics of variable multiplicity. First, we establish a well-posedness result in anisotropic Sobolev spaces for systems...
Autores principales: | Garetto, Claudia, Jäh, Christian, Ruzhansky, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411233/ https://www.ncbi.nlm.nih.gov/pubmed/30930490 http://dx.doi.org/10.1007/s00208-018-1672-1 |
Ejemplares similares
-
Global Well-posedness of Nonlinear Parabolic-Hyperbolic Coupled Systems
por: Qin, Yuming, et al.
Publicado: (2012) -
Hyperbolic systems with analytic coefficients: well-posedness of the Cauchy problem
por: Nishitani, Tatsuo
Publicado: (2014) -
Well-posedness of parabolic difference equations
por: Ashyralyev, A, et al.
Publicado: (1994) -
An improved lattice fermion action from block-diagonalisation
por: Güsken, S, et al.
Publicado: (1989) -
Cross-points in the Dirichlet-Neumann method I: well-posedness and convergence issues
por: Chaudet-Dumas, Bastien, et al.
Publicado: (2022)