Cargando…

Attention promotes the neural encoding of prediction errors

The encoding of sensory information in the human brain is thought to be optimised by two principal processes: ‘prediction’ uses stored information to guide the interpretation of forthcoming sensory events, and ‘attention’ prioritizes these events according to their behavioural relevance. Despite the...

Descripción completa

Detalles Bibliográficos
Autores principales: Smout, Cooper A., Tang, Matthew F., Garrido, Marta I., Mattingley, Jason B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411367/
https://www.ncbi.nlm.nih.gov/pubmed/30811381
http://dx.doi.org/10.1371/journal.pbio.2006812
_version_ 1783402379890130944
author Smout, Cooper A.
Tang, Matthew F.
Garrido, Marta I.
Mattingley, Jason B.
author_facet Smout, Cooper A.
Tang, Matthew F.
Garrido, Marta I.
Mattingley, Jason B.
author_sort Smout, Cooper A.
collection PubMed
description The encoding of sensory information in the human brain is thought to be optimised by two principal processes: ‘prediction’ uses stored information to guide the interpretation of forthcoming sensory events, and ‘attention’ prioritizes these events according to their behavioural relevance. Despite the ubiquitous contributions of attention and prediction to various aspects of perception and cognition, it remains unknown how they interact to modulate information processing in the brain. A recent extension of predictive coding theory suggests that attention optimises the expected precision of predictions by modulating the synaptic gain of prediction error units. Because prediction errors code for the difference between predictions and sensory signals, this model would suggest that attention increases the selectivity for mismatch information in the neural response to a surprising stimulus. Alternative predictive coding models propose that attention increases the activity of prediction (or ‘representation’) neurons and would therefore suggest that attention and prediction synergistically modulate selectivity for ‘feature information’ in the brain. Here, we applied forward encoding models to neural activity recorded via electroencephalography (EEG) as human observers performed a simple visual task to test for the effect of attention on both mismatch and feature information in the neural response to surprising stimuli. Participants attended or ignored a periodic stream of gratings, the orientations of which could be either predictable, surprising, or unpredictable. We found that surprising stimuli evoked neural responses that were encoded according to the difference between predicted and observed stimulus features, and that attention facilitated the encoding of this type of information in the brain. These findings advance our understanding of how attention and prediction modulate information processing in the brain, as well as support the theory that attention optimises precision expectations during hierarchical inference by increasing the gain of prediction errors.
format Online
Article
Text
id pubmed-6411367
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-64113672019-04-02 Attention promotes the neural encoding of prediction errors Smout, Cooper A. Tang, Matthew F. Garrido, Marta I. Mattingley, Jason B. PLoS Biol Research Article The encoding of sensory information in the human brain is thought to be optimised by two principal processes: ‘prediction’ uses stored information to guide the interpretation of forthcoming sensory events, and ‘attention’ prioritizes these events according to their behavioural relevance. Despite the ubiquitous contributions of attention and prediction to various aspects of perception and cognition, it remains unknown how they interact to modulate information processing in the brain. A recent extension of predictive coding theory suggests that attention optimises the expected precision of predictions by modulating the synaptic gain of prediction error units. Because prediction errors code for the difference between predictions and sensory signals, this model would suggest that attention increases the selectivity for mismatch information in the neural response to a surprising stimulus. Alternative predictive coding models propose that attention increases the activity of prediction (or ‘representation’) neurons and would therefore suggest that attention and prediction synergistically modulate selectivity for ‘feature information’ in the brain. Here, we applied forward encoding models to neural activity recorded via electroencephalography (EEG) as human observers performed a simple visual task to test for the effect of attention on both mismatch and feature information in the neural response to surprising stimuli. Participants attended or ignored a periodic stream of gratings, the orientations of which could be either predictable, surprising, or unpredictable. We found that surprising stimuli evoked neural responses that were encoded according to the difference between predicted and observed stimulus features, and that attention facilitated the encoding of this type of information in the brain. These findings advance our understanding of how attention and prediction modulate information processing in the brain, as well as support the theory that attention optimises precision expectations during hierarchical inference by increasing the gain of prediction errors. Public Library of Science 2019-02-27 /pmc/articles/PMC6411367/ /pubmed/30811381 http://dx.doi.org/10.1371/journal.pbio.2006812 Text en © 2019 Smout et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Smout, Cooper A.
Tang, Matthew F.
Garrido, Marta I.
Mattingley, Jason B.
Attention promotes the neural encoding of prediction errors
title Attention promotes the neural encoding of prediction errors
title_full Attention promotes the neural encoding of prediction errors
title_fullStr Attention promotes the neural encoding of prediction errors
title_full_unstemmed Attention promotes the neural encoding of prediction errors
title_short Attention promotes the neural encoding of prediction errors
title_sort attention promotes the neural encoding of prediction errors
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411367/
https://www.ncbi.nlm.nih.gov/pubmed/30811381
http://dx.doi.org/10.1371/journal.pbio.2006812
work_keys_str_mv AT smoutcoopera attentionpromotestheneuralencodingofpredictionerrors
AT tangmatthewf attentionpromotestheneuralencodingofpredictionerrors
AT garridomartai attentionpromotestheneuralencodingofpredictionerrors
AT mattingleyjasonb attentionpromotestheneuralencodingofpredictionerrors