Cargando…

Calpain Inhibition Restores Autophagy and Prevents Mitochondrial Fragmentation in a Human iPSC Model of Diabetic Endotheliopathy

The relationship between diabetes and endothelial dysfunction remains unclear, particularly the association with pathological activation of calpain, an intracellular cysteine protease. Here, we used human induced pluripotent stem cells-derived endothelial cells (iPSC-ECs) to investigate the effects...

Descripción completa

Detalles Bibliográficos
Autores principales: Ong, Sang-Bing, Lee, Won Hee, Shao, Ning-Yi, Ismail, Nur Izzah, Katwadi, Khairunnisa, Lim, Mim-Mim, Kwek, Xiu-Yi, Michel, Nathaly Anto, Li, Jiajun, Newson, Jordan, Tahmasebi, Soroush, Rehman, Jalees, Kodo, Kazuki, Jang, Hye Ryoun, Ong, Sang-Ging
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411483/
https://www.ncbi.nlm.nih.gov/pubmed/30799273
http://dx.doi.org/10.1016/j.stemcr.2019.01.017
_version_ 1783402391355260928
author Ong, Sang-Bing
Lee, Won Hee
Shao, Ning-Yi
Ismail, Nur Izzah
Katwadi, Khairunnisa
Lim, Mim-Mim
Kwek, Xiu-Yi
Michel, Nathaly Anto
Li, Jiajun
Newson, Jordan
Tahmasebi, Soroush
Rehman, Jalees
Kodo, Kazuki
Jang, Hye Ryoun
Ong, Sang-Ging
author_facet Ong, Sang-Bing
Lee, Won Hee
Shao, Ning-Yi
Ismail, Nur Izzah
Katwadi, Khairunnisa
Lim, Mim-Mim
Kwek, Xiu-Yi
Michel, Nathaly Anto
Li, Jiajun
Newson, Jordan
Tahmasebi, Soroush
Rehman, Jalees
Kodo, Kazuki
Jang, Hye Ryoun
Ong, Sang-Ging
author_sort Ong, Sang-Bing
collection PubMed
description The relationship between diabetes and endothelial dysfunction remains unclear, particularly the association with pathological activation of calpain, an intracellular cysteine protease. Here, we used human induced pluripotent stem cells-derived endothelial cells (iPSC-ECs) to investigate the effects of diabetes on vascular health. Our results indicate that iPSC-ECs exposed to hyperglycemia had impaired autophagy, increased mitochondria fragmentation, and was associated with increased calpain activity. In addition, hyperglycemic iPSC-ECs had increased susceptibility to cell death when subjected to a secondary insult—simulated ischemia-reperfusion injury (sIRI). Importantly, calpain inhibition restored autophagy and reduced mitochondrial fragmentation, concurrent with maintenance of ATP production, normalized reactive oxygen species levels and reduced susceptibility to sIRI. Using a human iPSC model of diabetic endotheliopathy, we demonstrated that restoration of autophagy and prevention of mitochondrial fragmentation via calpain inhibition improves vascular integrity. Our human iPSC-EC model thus represents a valuable platform to explore biological mechanisms and new treatments for diabetes-induced endothelial dysfunction.
format Online
Article
Text
id pubmed-6411483
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-64114832019-03-22 Calpain Inhibition Restores Autophagy and Prevents Mitochondrial Fragmentation in a Human iPSC Model of Diabetic Endotheliopathy Ong, Sang-Bing Lee, Won Hee Shao, Ning-Yi Ismail, Nur Izzah Katwadi, Khairunnisa Lim, Mim-Mim Kwek, Xiu-Yi Michel, Nathaly Anto Li, Jiajun Newson, Jordan Tahmasebi, Soroush Rehman, Jalees Kodo, Kazuki Jang, Hye Ryoun Ong, Sang-Ging Stem Cell Reports Article The relationship between diabetes and endothelial dysfunction remains unclear, particularly the association with pathological activation of calpain, an intracellular cysteine protease. Here, we used human induced pluripotent stem cells-derived endothelial cells (iPSC-ECs) to investigate the effects of diabetes on vascular health. Our results indicate that iPSC-ECs exposed to hyperglycemia had impaired autophagy, increased mitochondria fragmentation, and was associated with increased calpain activity. In addition, hyperglycemic iPSC-ECs had increased susceptibility to cell death when subjected to a secondary insult—simulated ischemia-reperfusion injury (sIRI). Importantly, calpain inhibition restored autophagy and reduced mitochondrial fragmentation, concurrent with maintenance of ATP production, normalized reactive oxygen species levels and reduced susceptibility to sIRI. Using a human iPSC model of diabetic endotheliopathy, we demonstrated that restoration of autophagy and prevention of mitochondrial fragmentation via calpain inhibition improves vascular integrity. Our human iPSC-EC model thus represents a valuable platform to explore biological mechanisms and new treatments for diabetes-induced endothelial dysfunction. Elsevier 2019-02-21 /pmc/articles/PMC6411483/ /pubmed/30799273 http://dx.doi.org/10.1016/j.stemcr.2019.01.017 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ong, Sang-Bing
Lee, Won Hee
Shao, Ning-Yi
Ismail, Nur Izzah
Katwadi, Khairunnisa
Lim, Mim-Mim
Kwek, Xiu-Yi
Michel, Nathaly Anto
Li, Jiajun
Newson, Jordan
Tahmasebi, Soroush
Rehman, Jalees
Kodo, Kazuki
Jang, Hye Ryoun
Ong, Sang-Ging
Calpain Inhibition Restores Autophagy and Prevents Mitochondrial Fragmentation in a Human iPSC Model of Diabetic Endotheliopathy
title Calpain Inhibition Restores Autophagy and Prevents Mitochondrial Fragmentation in a Human iPSC Model of Diabetic Endotheliopathy
title_full Calpain Inhibition Restores Autophagy and Prevents Mitochondrial Fragmentation in a Human iPSC Model of Diabetic Endotheliopathy
title_fullStr Calpain Inhibition Restores Autophagy and Prevents Mitochondrial Fragmentation in a Human iPSC Model of Diabetic Endotheliopathy
title_full_unstemmed Calpain Inhibition Restores Autophagy and Prevents Mitochondrial Fragmentation in a Human iPSC Model of Diabetic Endotheliopathy
title_short Calpain Inhibition Restores Autophagy and Prevents Mitochondrial Fragmentation in a Human iPSC Model of Diabetic Endotheliopathy
title_sort calpain inhibition restores autophagy and prevents mitochondrial fragmentation in a human ipsc model of diabetic endotheliopathy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411483/
https://www.ncbi.nlm.nih.gov/pubmed/30799273
http://dx.doi.org/10.1016/j.stemcr.2019.01.017
work_keys_str_mv AT ongsangbing calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT leewonhee calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT shaoningyi calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT ismailnurizzah calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT katwadikhairunnisa calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT limmimmim calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT kwekxiuyi calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT michelnathalyanto calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT lijiajun calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT newsonjordan calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT tahmasebisoroush calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT rehmanjalees calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT kodokazuki calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT janghyeryoun calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy
AT ongsangging calpaininhibitionrestoresautophagyandpreventsmitochondrialfragmentationinahumanipscmodelofdiabeticendotheliopathy