Cargando…
Tonotopic Differentiation of Coupling between Ca(2+) and Kv1.1 Expression in Brainstem Auditory Circuit
Tonotopic differentiations of ion channels ensure sound processing across frequencies. Afferent input plays a critical role in differentiations. We demonstrate here in organotypic culture of chicken cochlear nucleus that expression of Kv1.1 was coupled with Ca(2+) to a different degree depending on...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411580/ https://www.ncbi.nlm.nih.gov/pubmed/30856389 http://dx.doi.org/10.1016/j.isci.2019.02.022 |
Sumario: | Tonotopic differentiations of ion channels ensure sound processing across frequencies. Afferent input plays a critical role in differentiations. We demonstrate here in organotypic culture of chicken cochlear nucleus that expression of Kv1.1 was coupled with Ca(2+) to a different degree depending on tonotopic regions, thereby differentiating the level of expression within the nucleus. In the culture, Kv1.1 was down-regulated and not differentiated tonotopically. Chronic depolarization increased Kv1.1 expression in a level-dependent manner. Moreover, the dependence was steeper at higher-frequency regions, which restored the differentiation. The depolarization increased Kv1.1 via activation of Cav1 channels, whereas basal Ca(2+) level elevated similarly irrespective of tonotopic regions. Thus, the efficiency of Ca(2+)-dependent Kv1.1 expression would be fine-tuned in a tonotopic-region-specific manner, emphasizing the importance of neuronal tonotopic identity as well as pattern of afferent input in the tonotopic differentiation of the channel in the auditory circuit. |
---|