Cargando…
A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants
Manual quantification of the hippocampal atrophy state and rate is time consuming and prone to poor reproducibility, even when performed by neuroanatomical experts. The automation of hippocampal segmentation has been investigated in normal aging, epilepsy, and in Alzheimer's disease. Our first...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411582/ https://www.ncbi.nlm.nih.gov/pubmed/30606656 http://dx.doi.org/10.1016/j.nicl.2018.10.019 |
_version_ | 1783402408363163648 |
---|---|
author | Khlif, Mohamed Salah Egorova, Natalia Werden, Emilio Redolfi, Alberto Boccardi, Marina DeCarli, Charles S. Fletcher, Evan Singh, Baljeet Li, Qi Bird, Laura Brodtmann, Amy |
author_facet | Khlif, Mohamed Salah Egorova, Natalia Werden, Emilio Redolfi, Alberto Boccardi, Marina DeCarli, Charles S. Fletcher, Evan Singh, Baljeet Li, Qi Bird, Laura Brodtmann, Amy |
author_sort | Khlif, Mohamed Salah |
collection | PubMed |
description | Manual quantification of the hippocampal atrophy state and rate is time consuming and prone to poor reproducibility, even when performed by neuroanatomical experts. The automation of hippocampal segmentation has been investigated in normal aging, epilepsy, and in Alzheimer's disease. Our first goal was to compare manual and automated hippocampal segmentation in ischemic stroke and to, secondly, study the impact of stroke lesion presence on hippocampal volume estimation. We used eight automated methods to segment T1-weighted MR images from 105 ischemic stroke patients and 39 age-matched controls sampled from the Cognition And Neocortical Volume After Stroke (CANVAS) study. The methods were: AdaBoost, Atlas-based Hippocampal Segmentation (ABHS) from the IDeALab, Computational Anatomy Toolbox (CAT) using 3 atlas variants (Hammers, LPBA40 and Neuromorphometics), FIRST, FreeSurfer v5.3, and FreeSurfer v6.0-Subfields. A number of these methods were employed to re-segment the T1 images for the stroke group after the stroke lesions were masked (i.e., removed). The automated methods were assessed on eight measures: process yield (i.e. segmentation success rate), correlation (Pearson's R and Shrout's ICC), concordance (Lin's RC and Kandall's W), slope ‘a’ of best-fit line from correlation plots, percentage of outliers from Bland-Altman plots, and significance of control−stroke difference. We eliminated the redundant measures after analysing between-measure correlations using Spearman's rank correlation. We ranked the automated methods based on the sum of the remaining non-redundant measures where each measure ranged between 0 and 1. Subfields attained an overall score of 96.3%, followed by AdaBoost (95.0%) and FIRST (94.7%). CAT using the LPBA40 atlas inflated hippocampal volumes the most, while the Hammers atlas returned the smallest volumes overall. FIRST (p = 0.014), FreeSurfer v5.3 (p = 0.007), manual tracing (p = 0.049), and CAT using the Neuromorphometics atlas (p = 0.017) all showed a significantly reduced hippocampal volume mean for the stroke group compared to control at three months. Moreover, masking of the stroke lesions prior to segmentation resulted in hippocampal volumes which agreed less with manual tracing. These findings recommend an automated segmentation without lesion masking as a more reliable procedure for the estimation of hippocampal volume in ischemic stroke. |
format | Online Article Text |
id | pubmed-6411582 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-64115822019-03-22 A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants Khlif, Mohamed Salah Egorova, Natalia Werden, Emilio Redolfi, Alberto Boccardi, Marina DeCarli, Charles S. Fletcher, Evan Singh, Baljeet Li, Qi Bird, Laura Brodtmann, Amy Neuroimage Clin Article Manual quantification of the hippocampal atrophy state and rate is time consuming and prone to poor reproducibility, even when performed by neuroanatomical experts. The automation of hippocampal segmentation has been investigated in normal aging, epilepsy, and in Alzheimer's disease. Our first goal was to compare manual and automated hippocampal segmentation in ischemic stroke and to, secondly, study the impact of stroke lesion presence on hippocampal volume estimation. We used eight automated methods to segment T1-weighted MR images from 105 ischemic stroke patients and 39 age-matched controls sampled from the Cognition And Neocortical Volume After Stroke (CANVAS) study. The methods were: AdaBoost, Atlas-based Hippocampal Segmentation (ABHS) from the IDeALab, Computational Anatomy Toolbox (CAT) using 3 atlas variants (Hammers, LPBA40 and Neuromorphometics), FIRST, FreeSurfer v5.3, and FreeSurfer v6.0-Subfields. A number of these methods were employed to re-segment the T1 images for the stroke group after the stroke lesions were masked (i.e., removed). The automated methods were assessed on eight measures: process yield (i.e. segmentation success rate), correlation (Pearson's R and Shrout's ICC), concordance (Lin's RC and Kandall's W), slope ‘a’ of best-fit line from correlation plots, percentage of outliers from Bland-Altman plots, and significance of control−stroke difference. We eliminated the redundant measures after analysing between-measure correlations using Spearman's rank correlation. We ranked the automated methods based on the sum of the remaining non-redundant measures where each measure ranged between 0 and 1. Subfields attained an overall score of 96.3%, followed by AdaBoost (95.0%) and FIRST (94.7%). CAT using the LPBA40 atlas inflated hippocampal volumes the most, while the Hammers atlas returned the smallest volumes overall. FIRST (p = 0.014), FreeSurfer v5.3 (p = 0.007), manual tracing (p = 0.049), and CAT using the Neuromorphometics atlas (p = 0.017) all showed a significantly reduced hippocampal volume mean for the stroke group compared to control at three months. Moreover, masking of the stroke lesions prior to segmentation resulted in hippocampal volumes which agreed less with manual tracing. These findings recommend an automated segmentation without lesion masking as a more reliable procedure for the estimation of hippocampal volume in ischemic stroke. Elsevier 2018-10-22 /pmc/articles/PMC6411582/ /pubmed/30606656 http://dx.doi.org/10.1016/j.nicl.2018.10.019 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Khlif, Mohamed Salah Egorova, Natalia Werden, Emilio Redolfi, Alberto Boccardi, Marina DeCarli, Charles S. Fletcher, Evan Singh, Baljeet Li, Qi Bird, Laura Brodtmann, Amy A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants |
title | A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants |
title_full | A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants |
title_fullStr | A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants |
title_full_unstemmed | A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants |
title_short | A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants |
title_sort | comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411582/ https://www.ncbi.nlm.nih.gov/pubmed/30606656 http://dx.doi.org/10.1016/j.nicl.2018.10.019 |
work_keys_str_mv | AT khlifmohamedsalah acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT egorovanatalia acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT werdenemilio acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT redolfialberto acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT boccardimarina acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT decarlicharless acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT fletcherevan acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT singhbaljeet acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT liqi acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT birdlaura acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT brodtmannamy acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT khlifmohamedsalah comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT egorovanatalia comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT werdenemilio comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT redolfialberto comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT boccardimarina comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT decarlicharless comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT fletcherevan comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT singhbaljeet comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT liqi comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT birdlaura comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants AT brodtmannamy comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants |