Cargando…

A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants

Manual quantification of the hippocampal atrophy state and rate is time consuming and prone to poor reproducibility, even when performed by neuroanatomical experts. The automation of hippocampal segmentation has been investigated in normal aging, epilepsy, and in Alzheimer's disease. Our first...

Descripción completa

Detalles Bibliográficos
Autores principales: Khlif, Mohamed Salah, Egorova, Natalia, Werden, Emilio, Redolfi, Alberto, Boccardi, Marina, DeCarli, Charles S., Fletcher, Evan, Singh, Baljeet, Li, Qi, Bird, Laura, Brodtmann, Amy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411582/
https://www.ncbi.nlm.nih.gov/pubmed/30606656
http://dx.doi.org/10.1016/j.nicl.2018.10.019
_version_ 1783402408363163648
author Khlif, Mohamed Salah
Egorova, Natalia
Werden, Emilio
Redolfi, Alberto
Boccardi, Marina
DeCarli, Charles S.
Fletcher, Evan
Singh, Baljeet
Li, Qi
Bird, Laura
Brodtmann, Amy
author_facet Khlif, Mohamed Salah
Egorova, Natalia
Werden, Emilio
Redolfi, Alberto
Boccardi, Marina
DeCarli, Charles S.
Fletcher, Evan
Singh, Baljeet
Li, Qi
Bird, Laura
Brodtmann, Amy
author_sort Khlif, Mohamed Salah
collection PubMed
description Manual quantification of the hippocampal atrophy state and rate is time consuming and prone to poor reproducibility, even when performed by neuroanatomical experts. The automation of hippocampal segmentation has been investigated in normal aging, epilepsy, and in Alzheimer's disease. Our first goal was to compare manual and automated hippocampal segmentation in ischemic stroke and to, secondly, study the impact of stroke lesion presence on hippocampal volume estimation. We used eight automated methods to segment T1-weighted MR images from 105 ischemic stroke patients and 39 age-matched controls sampled from the Cognition And Neocortical Volume After Stroke (CANVAS) study. The methods were: AdaBoost, Atlas-based Hippocampal Segmentation (ABHS) from the IDeALab, Computational Anatomy Toolbox (CAT) using 3 atlas variants (Hammers, LPBA40 and Neuromorphometics), FIRST, FreeSurfer v5.3, and FreeSurfer v6.0-Subfields. A number of these methods were employed to re-segment the T1 images for the stroke group after the stroke lesions were masked (i.e., removed). The automated methods were assessed on eight measures: process yield (i.e. segmentation success rate), correlation (Pearson's R and Shrout's ICC), concordance (Lin's RC and Kandall's W), slope ‘a’ of best-fit line from correlation plots, percentage of outliers from Bland-Altman plots, and significance of control−stroke difference. We eliminated the redundant measures after analysing between-measure correlations using Spearman's rank correlation. We ranked the automated methods based on the sum of the remaining non-redundant measures where each measure ranged between 0 and 1. Subfields attained an overall score of 96.3%, followed by AdaBoost (95.0%) and FIRST (94.7%). CAT using the LPBA40 atlas inflated hippocampal volumes the most, while the Hammers atlas returned the smallest volumes overall. FIRST (p = 0.014), FreeSurfer v5.3 (p = 0.007), manual tracing (p = 0.049), and CAT using the Neuromorphometics atlas (p = 0.017) all showed a significantly reduced hippocampal volume mean for the stroke group compared to control at three months. Moreover, masking of the stroke lesions prior to segmentation resulted in hippocampal volumes which agreed less with manual tracing. These findings recommend an automated segmentation without lesion masking as a more reliable procedure for the estimation of hippocampal volume in ischemic stroke.
format Online
Article
Text
id pubmed-6411582
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-64115822019-03-22 A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants Khlif, Mohamed Salah Egorova, Natalia Werden, Emilio Redolfi, Alberto Boccardi, Marina DeCarli, Charles S. Fletcher, Evan Singh, Baljeet Li, Qi Bird, Laura Brodtmann, Amy Neuroimage Clin Article Manual quantification of the hippocampal atrophy state and rate is time consuming and prone to poor reproducibility, even when performed by neuroanatomical experts. The automation of hippocampal segmentation has been investigated in normal aging, epilepsy, and in Alzheimer's disease. Our first goal was to compare manual and automated hippocampal segmentation in ischemic stroke and to, secondly, study the impact of stroke lesion presence on hippocampal volume estimation. We used eight automated methods to segment T1-weighted MR images from 105 ischemic stroke patients and 39 age-matched controls sampled from the Cognition And Neocortical Volume After Stroke (CANVAS) study. The methods were: AdaBoost, Atlas-based Hippocampal Segmentation (ABHS) from the IDeALab, Computational Anatomy Toolbox (CAT) using 3 atlas variants (Hammers, LPBA40 and Neuromorphometics), FIRST, FreeSurfer v5.3, and FreeSurfer v6.0-Subfields. A number of these methods were employed to re-segment the T1 images for the stroke group after the stroke lesions were masked (i.e., removed). The automated methods were assessed on eight measures: process yield (i.e. segmentation success rate), correlation (Pearson's R and Shrout's ICC), concordance (Lin's RC and Kandall's W), slope ‘a’ of best-fit line from correlation plots, percentage of outliers from Bland-Altman plots, and significance of control−stroke difference. We eliminated the redundant measures after analysing between-measure correlations using Spearman's rank correlation. We ranked the automated methods based on the sum of the remaining non-redundant measures where each measure ranged between 0 and 1. Subfields attained an overall score of 96.3%, followed by AdaBoost (95.0%) and FIRST (94.7%). CAT using the LPBA40 atlas inflated hippocampal volumes the most, while the Hammers atlas returned the smallest volumes overall. FIRST (p = 0.014), FreeSurfer v5.3 (p = 0.007), manual tracing (p = 0.049), and CAT using the Neuromorphometics atlas (p = 0.017) all showed a significantly reduced hippocampal volume mean for the stroke group compared to control at three months. Moreover, masking of the stroke lesions prior to segmentation resulted in hippocampal volumes which agreed less with manual tracing. These findings recommend an automated segmentation without lesion masking as a more reliable procedure for the estimation of hippocampal volume in ischemic stroke. Elsevier 2018-10-22 /pmc/articles/PMC6411582/ /pubmed/30606656 http://dx.doi.org/10.1016/j.nicl.2018.10.019 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Khlif, Mohamed Salah
Egorova, Natalia
Werden, Emilio
Redolfi, Alberto
Boccardi, Marina
DeCarli, Charles S.
Fletcher, Evan
Singh, Baljeet
Li, Qi
Bird, Laura
Brodtmann, Amy
A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants
title A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants
title_full A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants
title_fullStr A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants
title_full_unstemmed A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants
title_short A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants
title_sort comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411582/
https://www.ncbi.nlm.nih.gov/pubmed/30606656
http://dx.doi.org/10.1016/j.nicl.2018.10.019
work_keys_str_mv AT khlifmohamedsalah acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT egorovanatalia acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT werdenemilio acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT redolfialberto acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT boccardimarina acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT decarlicharless acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT fletcherevan acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT singhbaljeet acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT liqi acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT birdlaura acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT brodtmannamy acomparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT khlifmohamedsalah comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT egorovanatalia comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT werdenemilio comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT redolfialberto comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT boccardimarina comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT decarlicharless comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT fletcherevan comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT singhbaljeet comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT liqi comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT birdlaura comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants
AT brodtmannamy comparisonofautomatedsegmentationandmanualtracinginestimatinghippocampalvolumeinischemicstrokeandhealthycontrolparticipants