Cargando…
PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features
Numerous inflammatory diseases and autoimmune disorders by therapeutic peptides have received substantial consideration; however, the exploration of anti-inflammatory peptides via biological experiments is often a time-consuming and expensive task. The development of novel in silico predictors is de...
Autores principales: | Khatun, Mst. Shamima, Hasan, Md. Mehedi, Kurata, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411759/ https://www.ncbi.nlm.nih.gov/pubmed/30891059 http://dx.doi.org/10.3389/fgene.2019.00129 |
Ejemplares similares
-
iLBE for Computational Identification of Linear B-cell Epitopes by Integrating Sequence and Evolutionary Features
por: Hasan, Md. Mehedi, et al.
Publicado: (2020) -
Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information
por: Hasan, Md. Mehedi, et al.
Publicado: (2019) -
Large-Scale Assessment of Bioinformatics Tools for Lysine Succinylation Sites
por: Hasan, Md. Mehedi, et al.
Publicado: (2019) -
Evolution of Sequence-based Bioinformatics Tools for Protein-protein Interaction Prediction
por: Khatun, Mst. Shamima, et al.
Publicado: (2020) -
i4mC-Mouse: Improved identification of DNA N4-methylcytosine sites in the mouse genome using multiple encoding schemes
por: Hasan, Md. Mehedi, et al.
Publicado: (2020)