Cargando…
Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy
Heart failure (HF) is the single largest cause for increased hospitalization after fine particulate matter (PM2.5) exposure. Patients with left HF often progress to right ventricular (RV) failure even with optimal medical care. An increase of PM2.5 of 10 μg per cubic meter was associated with a 76%...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411784/ https://www.ncbi.nlm.nih.gov/pubmed/30861460 http://dx.doi.org/10.1016/j.redox.2019.101161 |
_version_ | 1783402453620752384 |
---|---|
author | Yue, Wenhui Tong, Lei Liu, Xiaohong Weng, Xinyu Chen, Xiaoyu Wang, Dongzhi Dudley, Samuel C. Weir, E. Kenneth Ding, Wenjun Lu, Zhongbing Xu, Yawei Chen, Yingjie |
author_facet | Yue, Wenhui Tong, Lei Liu, Xiaohong Weng, Xinyu Chen, Xiaoyu Wang, Dongzhi Dudley, Samuel C. Weir, E. Kenneth Ding, Wenjun Lu, Zhongbing Xu, Yawei Chen, Yingjie |
author_sort | Yue, Wenhui |
collection | PubMed |
description | Heart failure (HF) is the single largest cause for increased hospitalization after fine particulate matter (PM2.5) exposure. Patients with left HF often progress to right ventricular (RV) failure even with optimal medical care. An increase of PM2.5 of 10 μg per cubic meter was associated with a 76% increase in the risk of death from cardiovascular disease in 4 years' period. However, the role and mechanism of PM2.5 in HF progression are not known. Here we investigated the role of PM2.5 exposure in mice with existing HF mice produced by transverse aortic constriction (TAC). TAC-induced HF caused lung inflammation, vascular remodeling and RV hypertrophy. We found increased PM2.5 profoundly exacerbated lung oxidative stress in mice with existing left HF. To our surprise, PM2.5 exposure had no effect on LV hypertrophy and function, but profoundly exacerbated lung inflammation, vascular remodeling, and RV hypertrophy in mice with existing left HF. These striking findings demonstrate that PM2.5 and/or air pollution is a critical factor for overall HF progression by regulating lung oxidative stress, inflammation and remodeling as well as RV hypertrophy. Improving air quality may save HF patients from a dismal fate. |
format | Online Article Text |
id | pubmed-6411784 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-64117842019-03-22 Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy Yue, Wenhui Tong, Lei Liu, Xiaohong Weng, Xinyu Chen, Xiaoyu Wang, Dongzhi Dudley, Samuel C. Weir, E. Kenneth Ding, Wenjun Lu, Zhongbing Xu, Yawei Chen, Yingjie Redox Biol Research Paper Heart failure (HF) is the single largest cause for increased hospitalization after fine particulate matter (PM2.5) exposure. Patients with left HF often progress to right ventricular (RV) failure even with optimal medical care. An increase of PM2.5 of 10 μg per cubic meter was associated with a 76% increase in the risk of death from cardiovascular disease in 4 years' period. However, the role and mechanism of PM2.5 in HF progression are not known. Here we investigated the role of PM2.5 exposure in mice with existing HF mice produced by transverse aortic constriction (TAC). TAC-induced HF caused lung inflammation, vascular remodeling and RV hypertrophy. We found increased PM2.5 profoundly exacerbated lung oxidative stress in mice with existing left HF. To our surprise, PM2.5 exposure had no effect on LV hypertrophy and function, but profoundly exacerbated lung inflammation, vascular remodeling, and RV hypertrophy in mice with existing left HF. These striking findings demonstrate that PM2.5 and/or air pollution is a critical factor for overall HF progression by regulating lung oxidative stress, inflammation and remodeling as well as RV hypertrophy. Improving air quality may save HF patients from a dismal fate. Elsevier 2019-03-06 /pmc/articles/PMC6411784/ /pubmed/30861460 http://dx.doi.org/10.1016/j.redox.2019.101161 Text en © 2019 The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Yue, Wenhui Tong, Lei Liu, Xiaohong Weng, Xinyu Chen, Xiaoyu Wang, Dongzhi Dudley, Samuel C. Weir, E. Kenneth Ding, Wenjun Lu, Zhongbing Xu, Yawei Chen, Yingjie Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy |
title | Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy |
title_full | Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy |
title_fullStr | Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy |
title_full_unstemmed | Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy |
title_short | Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy |
title_sort | short term pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411784/ https://www.ncbi.nlm.nih.gov/pubmed/30861460 http://dx.doi.org/10.1016/j.redox.2019.101161 |
work_keys_str_mv | AT yuewenhui shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy AT tonglei shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy AT liuxiaohong shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy AT wengxinyu shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy AT chenxiaoyu shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy AT wangdongzhi shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy AT dudleysamuelc shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy AT weirekenneth shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy AT dingwenjun shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy AT luzhongbing shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy AT xuyawei shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy AT chenyingjie shorttermpm25exposurecausedarobustlunginflammationvascularremodelingandexacerbatedtransitionfromleftventricularfailuretorightventricularhypertrophy |