Cargando…
Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation
A diversity of softwood lignin depolymerization processes yield guaiacol as the main low molecular weight product. This key aromatic compound can be utilized as a carbon source by several microbial species, most of which are Gram positive bacteria. Microbial degradation of guaiacol is known to proce...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411806/ https://www.ncbi.nlm.nih.gov/pubmed/30859469 http://dx.doi.org/10.1186/s13568-019-0759-8 |
_version_ | 1783402458184155136 |
---|---|
author | García-Hidalgo, Javier Ravi, Krithika Kuré, Lise-Lotte Lidén, Gunnar Gorwa-Grauslund, Marie |
author_facet | García-Hidalgo, Javier Ravi, Krithika Kuré, Lise-Lotte Lidén, Gunnar Gorwa-Grauslund, Marie |
author_sort | García-Hidalgo, Javier |
collection | PubMed |
description | A diversity of softwood lignin depolymerization processes yield guaiacol as the main low molecular weight product. This key aromatic compound can be utilized as a carbon source by several microbial species, most of which are Gram positive bacteria. Microbial degradation of guaiacol is known to proceed initially via demethylation to catechol, and this reaction is catalyzed by cytochrome P450 monooxygenases. These enzymes typically require a set of redox partner proteins, whose number and identities were not described until very recently in the case of guaiacol. In this work we identified two proteins involved in guaiacol demethylation by the actinomycete Rhodococcus rhodochrous. Additionally, we constructed four different polycistronic operons carrying combinations of putative redox partners of this guaiacol demethylation system in an inducible expression plasmid that was introduced into the Gram negative host Pseudomonas putida EM42, and the guaiacol consumption dynamics of each resulting strain were analyzed. All the polycistronic operons, expressing a cytochrome P450 together with a putative ferredoxin reductase from R. rhodochrous and putative ferredoxins from R. rhodochrous or Amycolatopsis ATCC 39116 enabled P. putida EM42 to metabolize and grow on guaiacol as the sole carbon source. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13568-019-0759-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6411806 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-64118062019-03-28 Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation García-Hidalgo, Javier Ravi, Krithika Kuré, Lise-Lotte Lidén, Gunnar Gorwa-Grauslund, Marie AMB Express Original Article A diversity of softwood lignin depolymerization processes yield guaiacol as the main low molecular weight product. This key aromatic compound can be utilized as a carbon source by several microbial species, most of which are Gram positive bacteria. Microbial degradation of guaiacol is known to proceed initially via demethylation to catechol, and this reaction is catalyzed by cytochrome P450 monooxygenases. These enzymes typically require a set of redox partner proteins, whose number and identities were not described until very recently in the case of guaiacol. In this work we identified two proteins involved in guaiacol demethylation by the actinomycete Rhodococcus rhodochrous. Additionally, we constructed four different polycistronic operons carrying combinations of putative redox partners of this guaiacol demethylation system in an inducible expression plasmid that was introduced into the Gram negative host Pseudomonas putida EM42, and the guaiacol consumption dynamics of each resulting strain were analyzed. All the polycistronic operons, expressing a cytochrome P450 together with a putative ferredoxin reductase from R. rhodochrous and putative ferredoxins from R. rhodochrous or Amycolatopsis ATCC 39116 enabled P. putida EM42 to metabolize and grow on guaiacol as the sole carbon source. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13568-019-0759-8) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2019-03-11 /pmc/articles/PMC6411806/ /pubmed/30859469 http://dx.doi.org/10.1186/s13568-019-0759-8 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article García-Hidalgo, Javier Ravi, Krithika Kuré, Lise-Lotte Lidén, Gunnar Gorwa-Grauslund, Marie Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation |
title | Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation |
title_full | Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation |
title_fullStr | Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation |
title_full_unstemmed | Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation |
title_short | Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation |
title_sort | identification of the two-component guaiacol demethylase system from rhodococcus rhodochrous and expression in pseudomonas putida em42 for guaiacol assimilation |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411806/ https://www.ncbi.nlm.nih.gov/pubmed/30859469 http://dx.doi.org/10.1186/s13568-019-0759-8 |
work_keys_str_mv | AT garciahidalgojavier identificationofthetwocomponentguaiacoldemethylasesystemfromrhodococcusrhodochrousandexpressioninpseudomonasputidaem42forguaiacolassimilation AT ravikrithika identificationofthetwocomponentguaiacoldemethylasesystemfromrhodococcusrhodochrousandexpressioninpseudomonasputidaem42forguaiacolassimilation AT kureliselotte identificationofthetwocomponentguaiacoldemethylasesystemfromrhodococcusrhodochrousandexpressioninpseudomonasputidaem42forguaiacolassimilation AT lidengunnar identificationofthetwocomponentguaiacoldemethylasesystemfromrhodococcusrhodochrousandexpressioninpseudomonasputidaem42forguaiacolassimilation AT gorwagrauslundmarie identificationofthetwocomponentguaiacoldemethylasesystemfromrhodococcusrhodochrousandexpressioninpseudomonasputidaem42forguaiacolassimilation |