Cargando…
Critical Role of Nrf2 in Experimental Ischemic Stroke
Ischemic stroke is one of the leading causes of death and long-term disability worldwide; however, effective clinical approaches are still limited. The transcriptional factor Nrf2 is a master regulator in cellular and organismal defense against endogenous and exogenous stressors by coordinating basa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411824/ https://www.ncbi.nlm.nih.gov/pubmed/30890934 http://dx.doi.org/10.3389/fphar.2019.00153 |
_version_ | 1783402461305765888 |
---|---|
author | Liu, Lei Locascio, Logan M. Doré, Sylvain |
author_facet | Liu, Lei Locascio, Logan M. Doré, Sylvain |
author_sort | Liu, Lei |
collection | PubMed |
description | Ischemic stroke is one of the leading causes of death and long-term disability worldwide; however, effective clinical approaches are still limited. The transcriptional factor Nrf2 is a master regulator in cellular and organismal defense against endogenous and exogenous stressors by coordinating basal and stress-inducible activation of multiple cytoprotective genes. The Nrf2 network not only tightly controls redox homeostasis but also regulates multiple intermediary metabolic processes. Therefore, targeting Nrf2 has emerged as an attractive therapeutic strategy for the prevention and treatment of CNS diseases including stroke. Here, the current understanding of the Nrf2 regulatory network is critically examined to present evidence for the contribution of Nrf2 pathway in rodent ischemic stroke models. This review outlines the literature for Nrf2 studies in preclinical stroke and focuses on the in vivo evidence for the role of Nrf2 in primary and secondary brain injuries. The dynamic change and functional importance of Nrf2 signaling, as well as Nrf2 targeted intervention, are revealed in permanent, transient, and global cerebral ischemia models. In addition, key considerations, pitfalls, and future potentials for Nrf2 studies in preclinical stroke investigation are discussed. |
format | Online Article Text |
id | pubmed-6411824 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64118242019-03-19 Critical Role of Nrf2 in Experimental Ischemic Stroke Liu, Lei Locascio, Logan M. Doré, Sylvain Front Pharmacol Pharmacology Ischemic stroke is one of the leading causes of death and long-term disability worldwide; however, effective clinical approaches are still limited. The transcriptional factor Nrf2 is a master regulator in cellular and organismal defense against endogenous and exogenous stressors by coordinating basal and stress-inducible activation of multiple cytoprotective genes. The Nrf2 network not only tightly controls redox homeostasis but also regulates multiple intermediary metabolic processes. Therefore, targeting Nrf2 has emerged as an attractive therapeutic strategy for the prevention and treatment of CNS diseases including stroke. Here, the current understanding of the Nrf2 regulatory network is critically examined to present evidence for the contribution of Nrf2 pathway in rodent ischemic stroke models. This review outlines the literature for Nrf2 studies in preclinical stroke and focuses on the in vivo evidence for the role of Nrf2 in primary and secondary brain injuries. The dynamic change and functional importance of Nrf2 signaling, as well as Nrf2 targeted intervention, are revealed in permanent, transient, and global cerebral ischemia models. In addition, key considerations, pitfalls, and future potentials for Nrf2 studies in preclinical stroke investigation are discussed. Frontiers Media S.A. 2019-03-05 /pmc/articles/PMC6411824/ /pubmed/30890934 http://dx.doi.org/10.3389/fphar.2019.00153 Text en Copyright © 2019 Liu, Locascio and Doré. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Liu, Lei Locascio, Logan M. Doré, Sylvain Critical Role of Nrf2 in Experimental Ischemic Stroke |
title | Critical Role of Nrf2 in Experimental Ischemic Stroke |
title_full | Critical Role of Nrf2 in Experimental Ischemic Stroke |
title_fullStr | Critical Role of Nrf2 in Experimental Ischemic Stroke |
title_full_unstemmed | Critical Role of Nrf2 in Experimental Ischemic Stroke |
title_short | Critical Role of Nrf2 in Experimental Ischemic Stroke |
title_sort | critical role of nrf2 in experimental ischemic stroke |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411824/ https://www.ncbi.nlm.nih.gov/pubmed/30890934 http://dx.doi.org/10.3389/fphar.2019.00153 |
work_keys_str_mv | AT liulei criticalroleofnrf2inexperimentalischemicstroke AT locasciologanm criticalroleofnrf2inexperimentalischemicstroke AT doresylvain criticalroleofnrf2inexperimentalischemicstroke |