Cargando…
Dual-energy CT for automatic organs-at-risk segmentation in brain-tumor patients using a multi-atlas and deep-learning approach
In radiotherapy, computed tomography (CT) datasets are mostly used for radiation treatment planning to achieve a high-conformal tumor coverage while optimally sparing healthy tissue surrounding the tumor, referred to as organs-at-risk (OARs). Based on CT scan and/or magnetic resonance images, OARs h...
Autores principales: | van der Heyden, Brent, Wohlfahrt, Patrick, Eekers, Daniëlle B. P., Richter, Christian, Terhaag, Karin, Troost, Esther G. C., Verhaegen, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411877/ https://www.ncbi.nlm.nih.gov/pubmed/30858409 http://dx.doi.org/10.1038/s41598-019-40584-9 |
Ejemplares similares
-
The impact of dual energy CT imaging on dose calculations for pre-clinical studies
por: Vaniqui, Ana, et al.
Publicado: (2017) -
VOXSI: A voxelized single- and dual-energy CT scenario generator for quantitative imaging
por: van der Heyden, Brent, et al.
Publicado: (2018) -
Deep Learning Based Automated Orthotopic Lung Tumor Segmentation in Whole-Body Mouse CT-Scans
por: van de Worp, Wouter R. P. H., et al.
Publicado: (2021) -
Deep learning approach for automatic segmentation of ulna and radius in dual-energy X-ray imaging
por: Yang, Fan, et al.
Publicado: (2021) -
On the equivalence of image-based dual-energy CT methods for the determination of electron density and effective atomic number in radiotherapy
por: Möhler, Christian, et al.
Publicado: (2018)