Cargando…
Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites
As a newly-identified protein post-translational modification, malonylation is involved in a variety of biological functions. Recognizing malonylation sites in substrates represents an initial but crucial step in elucidating the molecular mechanisms underlying protein malonylation. In this study, we...
Autores principales: | Chen, Zhen, He, Ningning, Huang, Yu, Qin, Wen Tao, Liu, Xuhan, Li, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411950/ https://www.ncbi.nlm.nih.gov/pubmed/30639696 http://dx.doi.org/10.1016/j.gpb.2018.08.004 |
Ejemplares similares
-
RF-MaloSite and DL-Malosite: Methods based on random forest and deep learning to identify malonylation sites
por: AL-barakati, Hussam, et al.
Publicado: (2020) -
BERMP: a cross-species classifier for predicting m(6)A sites by integrating a deep learning algorithm and a random forest approach
por: Huang, Yu, et al.
Publicado: (2018) -
Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration: Malonylation site prediction
por: Liu, Xin, et al.
Publicado: (2020) -
DeepNoise: Signal and Noise Disentanglement Based on Classifying Fluorescent Microscopy Images via Deep Learning
por: Yang, Sen, et al.
Publicado: (2022) -
A flexible integrative approach based on random forest improves prediction of transcription factor binding sites
por: Hooghe, Bart, et al.
Publicado: (2012)