Cargando…

Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces

A long-standing goal of neuroscience is a theory that explains the formation of the minicolumns in the cerebral cortex. Minicolumns are the elementary computational units of the mature neocortex. Here, we use zinc oxide nanowires with controlled topography as substrates for neural-cell growth. We ob...

Descripción completa

Detalles Bibliográficos
Autores principales: Onesto, V., Villani, M., Narducci, R., Malara, N., Imbrogno, A., Allione, M., Costa, N., Coppedè, N., Zappettini, A., Cannistraci, C. V., Cancedda, L., Amato, F., DI Fabrizio, Enzo, Gentile, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411964/
https://www.ncbi.nlm.nih.gov/pubmed/30858456
http://dx.doi.org/10.1038/s41598-019-40548-z
_version_ 1783402493601906688
author Onesto, V.
Villani, M.
Narducci, R.
Malara, N.
Imbrogno, A.
Allione, M.
Costa, N.
Coppedè, N.
Zappettini, A.
Cannistraci, C. V.
Cancedda, L.
Amato, F.
DI Fabrizio, Enzo
Gentile, F.
author_facet Onesto, V.
Villani, M.
Narducci, R.
Malara, N.
Imbrogno, A.
Allione, M.
Costa, N.
Coppedè, N.
Zappettini, A.
Cannistraci, C. V.
Cancedda, L.
Amato, F.
DI Fabrizio, Enzo
Gentile, F.
author_sort Onesto, V.
collection PubMed
description A long-standing goal of neuroscience is a theory that explains the formation of the minicolumns in the cerebral cortex. Minicolumns are the elementary computational units of the mature neocortex. Here, we use zinc oxide nanowires with controlled topography as substrates for neural-cell growth. We observe that neuronal cells form networks where the networks characteristics exhibit a high sensitivity to the topography of the nanowires. For certain values of nanowires density and fractal dimension, neuronal networks express small world attributes, with enhanced information flows. We observe that neurons in these networks congregate in superclusters of approximately 200 neurons. We demonstrate that this number is not coincidental: the maximum number of cells in a supercluster is limited by the competition between the binding energy between cells, adhesion to the substrate, and the kinetic energy of the system. Since cortical minicolumns have similar size, similar anatomical and topological characteristics of neuronal superclusters on nanowires surfaces, we conjecture that the formation of cortical minicolumns is likewise guided by the interplay between energy minimization, information optimization and topology. For the first time, we provide a clear account of the mechanisms of formation of the minicolumns in the brain.
format Online
Article
Text
id pubmed-6411964
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64119642019-03-13 Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces Onesto, V. Villani, M. Narducci, R. Malara, N. Imbrogno, A. Allione, M. Costa, N. Coppedè, N. Zappettini, A. Cannistraci, C. V. Cancedda, L. Amato, F. DI Fabrizio, Enzo Gentile, F. Sci Rep Article A long-standing goal of neuroscience is a theory that explains the formation of the minicolumns in the cerebral cortex. Minicolumns are the elementary computational units of the mature neocortex. Here, we use zinc oxide nanowires with controlled topography as substrates for neural-cell growth. We observe that neuronal cells form networks where the networks characteristics exhibit a high sensitivity to the topography of the nanowires. For certain values of nanowires density and fractal dimension, neuronal networks express small world attributes, with enhanced information flows. We observe that neurons in these networks congregate in superclusters of approximately 200 neurons. We demonstrate that this number is not coincidental: the maximum number of cells in a supercluster is limited by the competition between the binding energy between cells, adhesion to the substrate, and the kinetic energy of the system. Since cortical minicolumns have similar size, similar anatomical and topological characteristics of neuronal superclusters on nanowires surfaces, we conjecture that the formation of cortical minicolumns is likewise guided by the interplay between energy minimization, information optimization and topology. For the first time, we provide a clear account of the mechanisms of formation of the minicolumns in the brain. Nature Publishing Group UK 2019-03-11 /pmc/articles/PMC6411964/ /pubmed/30858456 http://dx.doi.org/10.1038/s41598-019-40548-z Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Onesto, V.
Villani, M.
Narducci, R.
Malara, N.
Imbrogno, A.
Allione, M.
Costa, N.
Coppedè, N.
Zappettini, A.
Cannistraci, C. V.
Cancedda, L.
Amato, F.
DI Fabrizio, Enzo
Gentile, F.
Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces
title Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces
title_full Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces
title_fullStr Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces
title_full_unstemmed Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces
title_short Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces
title_sort cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411964/
https://www.ncbi.nlm.nih.gov/pubmed/30858456
http://dx.doi.org/10.1038/s41598-019-40548-z
work_keys_str_mv AT onestov corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT villanim corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT narduccir corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT malaran corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT imbrognoa corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT allionem corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT costan corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT coppeden corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT zappettinia corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT cannistracicv corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT canceddal corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT amatof corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT difabrizioenzo corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces
AT gentilef corticallikeminicolumnsofneuronalcellsonzincoxidenanowiresurfaces