Cargando…
Offloading and Transmission Strategies for IoT Edge Devices and Networks
We present a machine and deep learning method to offload trained deep learning model and transmit packets efficiently on resource-constrained internet of things (IoT) edge devices and networks. Recently, the types of IoT devices have become diverse and the volume of data has been increasing, such as...
Autores principales: | Kang, Jiheon, Eom, Doo-Seop |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412226/ https://www.ncbi.nlm.nih.gov/pubmed/30781650 http://dx.doi.org/10.3390/s19040835 |
Ejemplares similares
-
An Efficient Computation Offloading Strategy with Mobile Edge Computing for IoT
por: Fang, Juan, et al.
Publicado: (2021) -
Memory Offloading for Remote Attestation of Multi-Service IoT Devices †
por: Dushku, Edlira, et al.
Publicado: (2022) -
Energy-Aware Computation Offloading of IoT Sensors in Cloudlet-Based Mobile Edge Computing
por: Ma, Xiao, et al.
Publicado: (2018) -
Data transmission reduction formalization for cloud offloading-based IoT systems
por: Elouali, Aya, et al.
Publicado: (2023) -
Efficient Matching-Based Parallel Task Offloading in IoT Networks
por: Malik, Usman Mahmood, et al.
Publicado: (2022)