Cargando…
Remote Control System for Battery-Assisted Devices with 16 nW Standby Consumption
One of the biggest impacts of the vision ‘Internet of Things’ is the massive number of connected devices, where billions of nodes will exchange data, information and commands. While wireless systems offer advantages such as increased flexibility, they also introduce one major challenge: how to power...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412235/ https://www.ncbi.nlm.nih.gov/pubmed/30823603 http://dx.doi.org/10.3390/s19040975 |
_version_ | 1783402558140710912 |
---|---|
author | Ferdik, Manuel Saxl, Georg Jesacher, Erwin Ussmueller, Thomas |
author_facet | Ferdik, Manuel Saxl, Georg Jesacher, Erwin Ussmueller, Thomas |
author_sort | Ferdik, Manuel |
collection | PubMed |
description | One of the biggest impacts of the vision ‘Internet of Things’ is the massive number of connected devices, where billions of nodes will exchange data, information and commands. While wireless systems offer advantages such as increased flexibility, they also introduce one major challenge: how to power each individual node. In many cases, there is no way around the use of batteries. To minimize the environmental impact, increasing the battery’s longevity is the most important factor. This paper introduces a wireless battery-assisted node that has a drastically reduced energy consumption in the standby mode. The state (on/off) will be changed by harvesting a radiofrequency signal. A latching switch connects or disconnects the load—for example, a microcontroller—and the battery. The switch is connected to a charge pump which converts an AC (alternating current) signal into a usable DC (direct current) control signal. An antenna is mounted to the charge pump via a matching network. An electromagnetic wave is emitted by a remote control switch that switches the system on and off. The used frequency is [Formula: see text] MHz and therefore in the UHF RFID (ultra high frequency radio frequency identification) band. The measurement results show that the wireless node consumes less than [Formula: see text] in the standby mode. The remote controlling is possible from a distance of more than [Formula: see text]. The presented system can be integrated in further work on a UHF RFID tag. Thus, the existing protocol standard can be used to identify the object to be switched. By custom commands, the switching request can be transmitted from the remote control (UHF RFID reader) to the switching node. |
format | Online Article Text |
id | pubmed-6412235 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64122352019-04-03 Remote Control System for Battery-Assisted Devices with 16 nW Standby Consumption Ferdik, Manuel Saxl, Georg Jesacher, Erwin Ussmueller, Thomas Sensors (Basel) Article One of the biggest impacts of the vision ‘Internet of Things’ is the massive number of connected devices, where billions of nodes will exchange data, information and commands. While wireless systems offer advantages such as increased flexibility, they also introduce one major challenge: how to power each individual node. In many cases, there is no way around the use of batteries. To minimize the environmental impact, increasing the battery’s longevity is the most important factor. This paper introduces a wireless battery-assisted node that has a drastically reduced energy consumption in the standby mode. The state (on/off) will be changed by harvesting a radiofrequency signal. A latching switch connects or disconnects the load—for example, a microcontroller—and the battery. The switch is connected to a charge pump which converts an AC (alternating current) signal into a usable DC (direct current) control signal. An antenna is mounted to the charge pump via a matching network. An electromagnetic wave is emitted by a remote control switch that switches the system on and off. The used frequency is [Formula: see text] MHz and therefore in the UHF RFID (ultra high frequency radio frequency identification) band. The measurement results show that the wireless node consumes less than [Formula: see text] in the standby mode. The remote controlling is possible from a distance of more than [Formula: see text]. The presented system can be integrated in further work on a UHF RFID tag. Thus, the existing protocol standard can be used to identify the object to be switched. By custom commands, the switching request can be transmitted from the remote control (UHF RFID reader) to the switching node. MDPI 2019-02-25 /pmc/articles/PMC6412235/ /pubmed/30823603 http://dx.doi.org/10.3390/s19040975 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ferdik, Manuel Saxl, Georg Jesacher, Erwin Ussmueller, Thomas Remote Control System for Battery-Assisted Devices with 16 nW Standby Consumption |
title | Remote Control System for Battery-Assisted Devices with 16 nW Standby Consumption |
title_full | Remote Control System for Battery-Assisted Devices with 16 nW Standby Consumption |
title_fullStr | Remote Control System for Battery-Assisted Devices with 16 nW Standby Consumption |
title_full_unstemmed | Remote Control System for Battery-Assisted Devices with 16 nW Standby Consumption |
title_short | Remote Control System for Battery-Assisted Devices with 16 nW Standby Consumption |
title_sort | remote control system for battery-assisted devices with 16 nw standby consumption |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412235/ https://www.ncbi.nlm.nih.gov/pubmed/30823603 http://dx.doi.org/10.3390/s19040975 |
work_keys_str_mv | AT ferdikmanuel remotecontrolsystemforbatteryassisteddeviceswith16nwstandbyconsumption AT saxlgeorg remotecontrolsystemforbatteryassisteddeviceswith16nwstandbyconsumption AT jesachererwin remotecontrolsystemforbatteryassisteddeviceswith16nwstandbyconsumption AT ussmuellerthomas remotecontrolsystemforbatteryassisteddeviceswith16nwstandbyconsumption |