Cargando…

Droplet-Based Microfluidic Thermal Management Methods for High Performance Electronic Devices

Advanced thermal management methods have been the key issues for the rapid development of the electronic industry following Moore’s law. Droplet-based microfluidic cooling technologies are considered as promising solutions to conquer the major challenges of high heat flux removal and nonuniform temp...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Zhibin, Jin, Mingliang, Li, Zhengguang, Zhou, Guofu, Shui, Lingling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412277/
https://www.ncbi.nlm.nih.gov/pubmed/30691049
http://dx.doi.org/10.3390/mi10020089
Descripción
Sumario:Advanced thermal management methods have been the key issues for the rapid development of the electronic industry following Moore’s law. Droplet-based microfluidic cooling technologies are considered as promising solutions to conquer the major challenges of high heat flux removal and nonuniform temperature distribution in confined spaces for high performance electronic devices. In this paper, we review the state-of-the-art droplet-based microfluidic cooling methods in the literature, including the basic theory of electrocapillarity, cooling applications of continuous electrowetting (CEW), electrowetting (EW) and electrowetting-on-dielectric (EWOD), and jumping droplet microfluidic liquid handling methods. The droplet-based microfluidic cooling methods have shown an attractive capability of microscale liquid manipulation and a relatively high heat flux removal for hot spots. Recommendations are made for further research to develop advanced liquid coolant materials and the optimization of system operation parameters.