Cargando…
Exploring RGB+Depth Fusion for Real-Time Object Detection
In this paper, we investigate whether fusing depth information on top of normal RGB data for camera-based object detection can help to increase the performance of current state-of-the-art single-shot detection networks. Indeed, depth sensing is easily acquired using depth cameras such as a Kinect or...
Autores principales: | Ophoff, Tanguy, Van Beeck, Kristof, Goedemé, Toon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412390/ https://www.ncbi.nlm.nih.gov/pubmed/30791476 http://dx.doi.org/10.3390/s19040866 |
Ejemplares similares
-
Investigating the Potential of Network Optimization for a Constrained Object Detection Problem
por: Ophoff, Tanguy, et al.
Publicado: (2021) -
Moving Object Detection Based on Fusion of Depth Information and RGB Features
por: Bi, Xin, et al.
Publicado: (2022) -
Absolute and Relative Depth-Induced Network for RGB-D Salient Object Detection
por: Kong, Yuqiu, et al.
Publicado: (2023) -
Texture Synthesis Repair of RealSense D435i Depth Images with Object-Oriented RGB Image Segmentation
por: Zhang, Longyu, et al.
Publicado: (2020) -
Enhancing the Tracking of Seedling Growth Using RGB-Depth Fusion and Deep Learning
por: Garbouge, Hadhami, et al.
Publicado: (2021)