Cargando…
FPGA-Based Hybrid-Type Implementation of Quantized Neural Networks for Remote Sensing Applications
Recently, extensive convolutional neural network (CNN)-based methods have been used in remote sensing applications, such as object detection and classification, and have achieved significant improvements in performance. Furthermore, there are a lot of hardware implementation demands for remote sensi...
Autores principales: | Wei, Xin, Liu, Wenchao, Chen, Lei, Ma, Long, Chen, He, Zhuang, Yin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412419/ https://www.ncbi.nlm.nih.gov/pubmed/30813259 http://dx.doi.org/10.3390/s19040924 |
Ejemplares similares
-
FPGA implementations of neural networks
por: Omondi, Amos R, et al.
Publicado: (2006) -
Pattern Classification Using Quantized Neural Networks for FPGA-Based Low-Power IoT Devices
por: Biswal, Manas Ranjan, et al.
Publicado: (2022) -
Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI
por: Pistellato, Mara, et al.
Publicado: (2023) -
FPGA Implementation for Odor Identification with Depthwise Separable Convolutional Neural Network
por: Mo, Zhuofeng, et al.
Publicado: (2021) -
Quantization Framework for Fast Spiking Neural Networks
por: Li, Chen, et al.
Publicado: (2022)