Cargando…
Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Supercapacitors
Graphene oxide (GO) decorated with silver (Ag), copper (Cu) or platinum (Pt) nanoparticles that are anchored on dodecylbenzene sulfonic acid (DBSA)-doped polyaniline (PANI) were prepared by a simple one-step method and applied as novel materials for high performance supercapacitors. High-resolution...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412443/ https://www.ncbi.nlm.nih.gov/pubmed/30754698 http://dx.doi.org/10.3390/mi10020115 |
_version_ | 1783402606365769728 |
---|---|
author | Dywili, Nomxolisi R. Ntziouni, Afroditi Ikpo, Chinwe Ndipingwi, Miranda Hlongwa, Ntuthuko W. Yonkeu, Anne L. D. Masikini, Milua Kordatos, Konstantinos Iwuoha, Emmanuel I. |
author_facet | Dywili, Nomxolisi R. Ntziouni, Afroditi Ikpo, Chinwe Ndipingwi, Miranda Hlongwa, Ntuthuko W. Yonkeu, Anne L. D. Masikini, Milua Kordatos, Konstantinos Iwuoha, Emmanuel I. |
author_sort | Dywili, Nomxolisi R. |
collection | PubMed |
description | Graphene oxide (GO) decorated with silver (Ag), copper (Cu) or platinum (Pt) nanoparticles that are anchored on dodecylbenzene sulfonic acid (DBSA)-doped polyaniline (PANI) were prepared by a simple one-step method and applied as novel materials for high performance supercapacitors. High-resolution transmission electron microscopy (HRTEM) and high-resolution scanning electron microscopy (HRSEM) analyses revealed that a metal-decorated polymer matrix is embedded within the GO sheet. This caused the M/DBSA–PANI (M = Ag, Cu or Pt) particles to adsorb on the surface of the GO sheets, appearing as aggregated dark regions in the HRSEM images. The Fourier transform infrared (FTIR) spectroscopy studies revealed that GO was successfully produced and decorated with Ag, Cu or Pt nanoparticles anchored on DBSA–PANI. This was confirmed by the appearance of the GO signature epoxy C–O vibration band at 1040 cm(−1) (which decreased upon the introduction of metal nanoparticle) and the PANI characteristic N–H stretching vibration band at 3144 cm(−1) present only in the GO/M/DBSA–PANI systems. The composites were tested for their suitability as supercapacitor materials; and specific capacitance values of 206.4, 192.8 and 227.2 F·g(−1) were determined for GO/Ag/DBSA–PANI, GO/Cu/DBSA–PANI and GO/Pt/DBSA–PANI, respectively. The GO/Pt/DBSA–PANI electrode exhibited the best specific capacitance value of the three electrodes and also had twice the specific capacitance value reported for Graphene/MnO(2)//ACN (113.5 F·g(−1)). This makes GO/Pt/DBSA–PANI a very promising organic supercapacitor material. |
format | Online Article Text |
id | pubmed-6412443 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64124432019-04-09 Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Supercapacitors Dywili, Nomxolisi R. Ntziouni, Afroditi Ikpo, Chinwe Ndipingwi, Miranda Hlongwa, Ntuthuko W. Yonkeu, Anne L. D. Masikini, Milua Kordatos, Konstantinos Iwuoha, Emmanuel I. Micromachines (Basel) Article Graphene oxide (GO) decorated with silver (Ag), copper (Cu) or platinum (Pt) nanoparticles that are anchored on dodecylbenzene sulfonic acid (DBSA)-doped polyaniline (PANI) were prepared by a simple one-step method and applied as novel materials for high performance supercapacitors. High-resolution transmission electron microscopy (HRTEM) and high-resolution scanning electron microscopy (HRSEM) analyses revealed that a metal-decorated polymer matrix is embedded within the GO sheet. This caused the M/DBSA–PANI (M = Ag, Cu or Pt) particles to adsorb on the surface of the GO sheets, appearing as aggregated dark regions in the HRSEM images. The Fourier transform infrared (FTIR) spectroscopy studies revealed that GO was successfully produced and decorated with Ag, Cu or Pt nanoparticles anchored on DBSA–PANI. This was confirmed by the appearance of the GO signature epoxy C–O vibration band at 1040 cm(−1) (which decreased upon the introduction of metal nanoparticle) and the PANI characteristic N–H stretching vibration band at 3144 cm(−1) present only in the GO/M/DBSA–PANI systems. The composites were tested for their suitability as supercapacitor materials; and specific capacitance values of 206.4, 192.8 and 227.2 F·g(−1) were determined for GO/Ag/DBSA–PANI, GO/Cu/DBSA–PANI and GO/Pt/DBSA–PANI, respectively. The GO/Pt/DBSA–PANI electrode exhibited the best specific capacitance value of the three electrodes and also had twice the specific capacitance value reported for Graphene/MnO(2)//ACN (113.5 F·g(−1)). This makes GO/Pt/DBSA–PANI a very promising organic supercapacitor material. MDPI 2019-02-11 /pmc/articles/PMC6412443/ /pubmed/30754698 http://dx.doi.org/10.3390/mi10020115 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dywili, Nomxolisi R. Ntziouni, Afroditi Ikpo, Chinwe Ndipingwi, Miranda Hlongwa, Ntuthuko W. Yonkeu, Anne L. D. Masikini, Milua Kordatos, Konstantinos Iwuoha, Emmanuel I. Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Supercapacitors |
title | Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Supercapacitors |
title_full | Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Supercapacitors |
title_fullStr | Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Supercapacitors |
title_full_unstemmed | Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Supercapacitors |
title_short | Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Supercapacitors |
title_sort | graphene oxide decorated nanometal-poly(anilino-dodecylbenzene sulfonic acid) for application in high performance supercapacitors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412443/ https://www.ncbi.nlm.nih.gov/pubmed/30754698 http://dx.doi.org/10.3390/mi10020115 |
work_keys_str_mv | AT dywilinomxolisir grapheneoxidedecoratednanometalpolyanilinododecylbenzenesulfonicacidforapplicationinhighperformancesupercapacitors AT ntziouniafroditi grapheneoxidedecoratednanometalpolyanilinododecylbenzenesulfonicacidforapplicationinhighperformancesupercapacitors AT ikpochinwe grapheneoxidedecoratednanometalpolyanilinododecylbenzenesulfonicacidforapplicationinhighperformancesupercapacitors AT ndipingwimiranda grapheneoxidedecoratednanometalpolyanilinododecylbenzenesulfonicacidforapplicationinhighperformancesupercapacitors AT hlongwantuthukow grapheneoxidedecoratednanometalpolyanilinododecylbenzenesulfonicacidforapplicationinhighperformancesupercapacitors AT yonkeuanneld grapheneoxidedecoratednanometalpolyanilinododecylbenzenesulfonicacidforapplicationinhighperformancesupercapacitors AT masikinimilua grapheneoxidedecoratednanometalpolyanilinododecylbenzenesulfonicacidforapplicationinhighperformancesupercapacitors AT kordatoskonstantinos grapheneoxidedecoratednanometalpolyanilinododecylbenzenesulfonicacidforapplicationinhighperformancesupercapacitors AT iwuohaemmanueli grapheneoxidedecoratednanometalpolyanilinododecylbenzenesulfonicacidforapplicationinhighperformancesupercapacitors |