Cargando…
A Highly Sensitive Pressure-Sensing Array for Blood Pressure Estimation Assisted by Machine-Learning Techniques
This work describes the development of a pressure-sensing array for noninvasive continuous blood pulse-wave monitoring. The sensing elements comprise a conductive polymer film and interdigital electrodes patterned on a flexible Parylene C substrate. The polymer film was patterned with microdome stru...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412448/ https://www.ncbi.nlm.nih.gov/pubmed/30791363 http://dx.doi.org/10.3390/s19040848 |
Sumario: | This work describes the development of a pressure-sensing array for noninvasive continuous blood pulse-wave monitoring. The sensing elements comprise a conductive polymer film and interdigital electrodes patterned on a flexible Parylene C substrate. The polymer film was patterned with microdome structures to enhance the acuteness of pressure sensing. The proposed device uses three pressure-sensing elements in a linear array, which greatly facilitates the blood pulse-wave measurement. The device exhibits high sensitivity (−0.533 kPa(−1)) and a fast dynamic response. Furthermore, various machine-learning algorithms, including random forest regression (RFR), gradient-boosting regression (GBR), and adaptive boosting regression (ABR), were employed for estimating systolic blood pressure (SBP) and diastolic blood pressure (DBP) from the measured pulse-wave signals. Among these algorithms, the RFR-based method gave the best performance, with the coefficients of determination for the reference and estimated blood pressures being R(2) = 0.871 for SBP and R(2) = 0.794 for DBP, respectively. |
---|