Cargando…
LJELSR: A Strengthened Version of JELSR for Feature Selection and Clustering
Feature selection and sample clustering play an important role in bioinformatics. Traditional feature selection methods separate sparse regression and embedding learning. Later, to effectively identify the significant features of the genomic data, Joint Embedding Learning and Sparse Regression (JELS...
Autores principales: | Wu, Sha-Sha, Hou, Mi-Xiao, Feng, Chun-Mei, Liu, Jin-Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412528/ https://www.ncbi.nlm.nih.gov/pubmed/30781701 http://dx.doi.org/10.3390/ijms20040886 |
Ejemplares similares
-
Joint Lp-Norm and L(2,1)-Norm Constrained Graph Laplacian PCA for Robust Tumor Sample Clustering and Gene Network Module Discovery
por: Kong, Xiang-Zhen, et al.
Publicado: (2021) -
The MATRICS Consensus Cognitive Battery: Psychometric Properties of the Chinese Version in Young Patients With Major Depression Disorder
por: Liang, Sixiang, et al.
Publicado: (2021) -
A new method for mining information of co-expression network based on multi-cancers integrated data
por: Hou, Mi-Xiao, et al.
Publicado: (2019) -
Necking and notch strengthening in metallic glass with symmetric sharp-and-deep notches
por: Sha, Z. D., et al.
Publicado: (2015) -
Precipitation strengthening in an ultralight magnesium alloy
por: Tang, Song, et al.
Publicado: (2019)