Cargando…
Asymmetrical Training Scheme of Binary-Memristor-Crossbar-Based Neural Networks for Energy-Efficient Edge-Computing Nanoscale Systems
For realizing neural networks with binary memristor crossbars, memristors should be programmed by high-resistance state (HRS) and low-resistance state (LRS), according to the training algorithms like backpropagation. Unfortunately, it takes a very long time and consumes a large amount of power in tr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412588/ https://www.ncbi.nlm.nih.gov/pubmed/30791655 http://dx.doi.org/10.3390/mi10020141 |