Cargando…
An LSTM-Based Method with Attention Mechanism for Travel Time Prediction
Traffic prediction is based on modeling the complex non-linear spatiotemporal traffic dynamics in road network. In recent years, Long Short-Term Memory has been applied to traffic prediction, achieving better performance. The existing Long Short-Term Memory methods for traffic prediction have two dr...
Autores principales: | Ran, Xiangdong, Shan, Zhiguang, Fang, Yufei, Lin, Chuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412727/ https://www.ncbi.nlm.nih.gov/pubmed/30791424 http://dx.doi.org/10.3390/s19040861 |
Ejemplares similares
-
A Convolution Component-Based Method with Attention Mechanism for Travel-Time Prediction
por: Ran, Xiangdong, et al.
Publicado: (2019) -
Vehicle Destination Prediction Using Bidirectional LSTM with Attention Mechanism
por: Casabianca, Pietro, et al.
Publicado: (2021) -
Attention based GRU-LSTM for software defect prediction
por: Munir, Hafiz Shahbaz, et al.
Publicado: (2021) -
Real-Time Monitoring for Hydraulic States Based on Convolutional Bidirectional LSTM with Attention Mechanism
por: Kim, Kyutae, et al.
Publicado: (2020) -
Expression EEG Multimodal Emotion Recognition Method Based on the Bidirectional LSTM and Attention Mechanism
por: Zhao, Yifeng, et al.
Publicado: (2021)