Cargando…

Improvement of Noise Uncertainty and Signal-To-Noise Ratio Wall in Spectrum Sensing Based on Optimal Stochastic Resonance

Noise uncertainty and signal-to-noise ratio (SNR) wall are two very serious problems in spectrum sensing of cognitive radio (CR) networks, which restrict the applications of some conventional spectrum sensing methods especially under low SNR circumstances. In this study, an optimal dynamic stochasti...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Di, Chen, Xin, Pei, Ling, Jiang, Lingge, Yu, Wenxian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412739/
https://www.ncbi.nlm.nih.gov/pubmed/30781680
http://dx.doi.org/10.3390/s19040841
Descripción
Sumario:Noise uncertainty and signal-to-noise ratio (SNR) wall are two very serious problems in spectrum sensing of cognitive radio (CR) networks, which restrict the applications of some conventional spectrum sensing methods especially under low SNR circumstances. In this study, an optimal dynamic stochastic resonance (SR) processing method is introduced to improve the SNR of the receiving signal under certain conditions. By using the proposed method, the SNR wall can be enhanced and the sampling complexity can be reduced, accordingly the noise uncertainty of the received signal can also be decreased. Based on the well-studied overdamped bistable SR system, the theoretical analyses and the computer simulations verify the effectiveness of the proposed approach. It can extend the application scenes of the conventional energy detection especially under some serious wireless conditions especially low SNR circumstances such as deep wireless signal fading, signal shadowing and multipath fading.