Cargando…
Autism Spectrum Disorder (ASD) with and without Mental Regression Is Associated with Changes in the Fecal Microbiota
New microbiome sequencing technologies provide novel information about the potential interactions among intestinal microorganisms and the host in some neuropathologies as autism spectrum disorders (ASD). The microbiota–gut–brain axis is an emerging aspect in the generation of autistic behaviors; evi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412819/ https://www.ncbi.nlm.nih.gov/pubmed/30764497 http://dx.doi.org/10.3390/nu11020337 |
_version_ | 1783402693952274432 |
---|---|
author | Plaza-Díaz, Julio Gómez-Fernández, Antonio Chueca, Natalia de la Torre-Aguilar, María José Gil, Ángel Perez-Navero, Juan Luis Flores-Rojas, Katherine Martín-Borreguero, Pilar Solis-Urra, Patricio Ruiz-Ojeda, Francisco Javier Garcia, Federico Gil-Campos, Mercedes |
author_facet | Plaza-Díaz, Julio Gómez-Fernández, Antonio Chueca, Natalia de la Torre-Aguilar, María José Gil, Ángel Perez-Navero, Juan Luis Flores-Rojas, Katherine Martín-Borreguero, Pilar Solis-Urra, Patricio Ruiz-Ojeda, Francisco Javier Garcia, Federico Gil-Campos, Mercedes |
author_sort | Plaza-Díaz, Julio |
collection | PubMed |
description | New microbiome sequencing technologies provide novel information about the potential interactions among intestinal microorganisms and the host in some neuropathologies as autism spectrum disorders (ASD). The microbiota–gut–brain axis is an emerging aspect in the generation of autistic behaviors; evidence from animal models suggests that intestinal microbial shifts may produce changes fitting the clinical picture of autism. The aim of the present study was to evaluate the fecal metagenomic profiles in children with ASD and compare them with healthy participants. This comparison allows us to ascertain how mental regression (an important variable in ASD) could influence the intestinal microbiota profile. For this reason, a subclassification in children with ASD by mental regression (AMR) and no mental regression (ANMR) phenotype was performed. The present report was a descriptive observational study. Forty-eight children aged 2–6 years with ASD were included: 30 with ANMR and 18 with AMR. In addition, a control group of 57 normally developing children was selected and matched to the ASD group by sex and age. Fecal samples were analyzed with a metagenomic approach using a next-generation sequencing platform. Several differences between children with ASD, compared with the healthy group, were detected. Namely, Actinobacteria and Proteobacteria at phylum level, as well as, Actinobacteria, Bacilli, Erysipelotrichi, and Gammaproteobacteria at class level were found at higher proportions in children with ASD. Additionally, Proteobacteria levels showed to be augmented exclusively in AMR children. Preliminary results, using a principal component analysis, showed differential patterns in children with ASD, ANMR and AMR, compared to healthy group, both for intestinal microbiota and food patterns. In this study, we report, higher levels of Actinobacteria, Proteobacteria and Bacilli, aside from Erysipelotrichi, and Gammaproteobacteria in children with ASD compared to healthy group. Furthermore, AMR children exhibited higher levels of Proteobacteria. Further analysis using these preliminary results and mixing metagenomic and other “omic” technologies are needed in larger cohorts of children with ASD to confirm these intestinal microbiota changes. |
format | Online Article Text |
id | pubmed-6412819 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64128192019-04-09 Autism Spectrum Disorder (ASD) with and without Mental Regression Is Associated with Changes in the Fecal Microbiota Plaza-Díaz, Julio Gómez-Fernández, Antonio Chueca, Natalia de la Torre-Aguilar, María José Gil, Ángel Perez-Navero, Juan Luis Flores-Rojas, Katherine Martín-Borreguero, Pilar Solis-Urra, Patricio Ruiz-Ojeda, Francisco Javier Garcia, Federico Gil-Campos, Mercedes Nutrients Article New microbiome sequencing technologies provide novel information about the potential interactions among intestinal microorganisms and the host in some neuropathologies as autism spectrum disorders (ASD). The microbiota–gut–brain axis is an emerging aspect in the generation of autistic behaviors; evidence from animal models suggests that intestinal microbial shifts may produce changes fitting the clinical picture of autism. The aim of the present study was to evaluate the fecal metagenomic profiles in children with ASD and compare them with healthy participants. This comparison allows us to ascertain how mental regression (an important variable in ASD) could influence the intestinal microbiota profile. For this reason, a subclassification in children with ASD by mental regression (AMR) and no mental regression (ANMR) phenotype was performed. The present report was a descriptive observational study. Forty-eight children aged 2–6 years with ASD were included: 30 with ANMR and 18 with AMR. In addition, a control group of 57 normally developing children was selected and matched to the ASD group by sex and age. Fecal samples were analyzed with a metagenomic approach using a next-generation sequencing platform. Several differences between children with ASD, compared with the healthy group, were detected. Namely, Actinobacteria and Proteobacteria at phylum level, as well as, Actinobacteria, Bacilli, Erysipelotrichi, and Gammaproteobacteria at class level were found at higher proportions in children with ASD. Additionally, Proteobacteria levels showed to be augmented exclusively in AMR children. Preliminary results, using a principal component analysis, showed differential patterns in children with ASD, ANMR and AMR, compared to healthy group, both for intestinal microbiota and food patterns. In this study, we report, higher levels of Actinobacteria, Proteobacteria and Bacilli, aside from Erysipelotrichi, and Gammaproteobacteria in children with ASD compared to healthy group. Furthermore, AMR children exhibited higher levels of Proteobacteria. Further analysis using these preliminary results and mixing metagenomic and other “omic” technologies are needed in larger cohorts of children with ASD to confirm these intestinal microbiota changes. MDPI 2019-02-05 /pmc/articles/PMC6412819/ /pubmed/30764497 http://dx.doi.org/10.3390/nu11020337 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Plaza-Díaz, Julio Gómez-Fernández, Antonio Chueca, Natalia de la Torre-Aguilar, María José Gil, Ángel Perez-Navero, Juan Luis Flores-Rojas, Katherine Martín-Borreguero, Pilar Solis-Urra, Patricio Ruiz-Ojeda, Francisco Javier Garcia, Federico Gil-Campos, Mercedes Autism Spectrum Disorder (ASD) with and without Mental Regression Is Associated with Changes in the Fecal Microbiota |
title | Autism Spectrum Disorder (ASD) with and without Mental Regression Is Associated with Changes in the Fecal Microbiota |
title_full | Autism Spectrum Disorder (ASD) with and without Mental Regression Is Associated with Changes in the Fecal Microbiota |
title_fullStr | Autism Spectrum Disorder (ASD) with and without Mental Regression Is Associated with Changes in the Fecal Microbiota |
title_full_unstemmed | Autism Spectrum Disorder (ASD) with and without Mental Regression Is Associated with Changes in the Fecal Microbiota |
title_short | Autism Spectrum Disorder (ASD) with and without Mental Regression Is Associated with Changes in the Fecal Microbiota |
title_sort | autism spectrum disorder (asd) with and without mental regression is associated with changes in the fecal microbiota |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412819/ https://www.ncbi.nlm.nih.gov/pubmed/30764497 http://dx.doi.org/10.3390/nu11020337 |
work_keys_str_mv | AT plazadiazjulio autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota AT gomezfernandezantonio autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota AT chuecanatalia autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota AT delatorreaguilarmariajose autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota AT gilangel autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota AT pereznaverojuanluis autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota AT floresrojaskatherine autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota AT martinborregueropilar autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota AT solisurrapatricio autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota AT ruizojedafranciscojavier autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota AT garciafederico autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota AT gilcamposmercedes autismspectrumdisorderasdwithandwithoutmentalregressionisassociatedwithchangesinthefecalmicrobiota |