Cargando…
Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency
Dlx3 (distal-less homeobox 3) haploinsufficiency in mice has been shown to result in restricted fetal growth and placental defects. We previously showed that maternal choline supplementation (4X versus 1X choline) in the Dlx3+/− mouse increased fetal and placental growth in mid-gestation. The curren...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412879/ https://www.ncbi.nlm.nih.gov/pubmed/30759768 http://dx.doi.org/10.3390/nu11020374 |
_version_ | 1783402708176207872 |
---|---|
author | King, Julia H. Kwan, Sze Ting (Cecilia) Yan, Jian Jiang, Xinyin Fomin, Vladislav G. Levine, Samantha P. Wei, Emily Roberson, Mark S. Caudill, Marie A. |
author_facet | King, Julia H. Kwan, Sze Ting (Cecilia) Yan, Jian Jiang, Xinyin Fomin, Vladislav G. Levine, Samantha P. Wei, Emily Roberson, Mark S. Caudill, Marie A. |
author_sort | King, Julia H. |
collection | PubMed |
description | Dlx3 (distal-less homeobox 3) haploinsufficiency in mice has been shown to result in restricted fetal growth and placental defects. We previously showed that maternal choline supplementation (4X versus 1X choline) in the Dlx3+/− mouse increased fetal and placental growth in mid-gestation. The current study sought to test the hypothesis that prenatal choline would modulate indicators of placenta function and development. Pregnant Dlx3+/− mice consuming 1X (control), 2X, or 4X choline from conception were sacrificed at embryonic (E) days E10.5, E12.5, E15.5, and E18.5, and placentas and embryos were harvested. Data were analyzed separately for each gestational day controlling for litter size, fetal genotype (except for models including only +/− pups), and fetal sex (except when data were stratified by this variable). 4X choline tended to increase (p < 0.1) placental labyrinth size at E10.5 and decrease (p < 0.05) placental apoptosis at E12.5. Choline supplementation decreased (p < 0.05) expression of pro-angiogenic genes Eng (E10.5, E12.5, and E15.5), and Vegf (E12.5, E15.5); and pro-inflammatory genes Il1b (at E15.5 and 18.5), Tnfα (at E12.5) and Nfκb (at E15.5) in a fetal sex-dependent manner. These findings provide support for a modulatory effect of maternal choline supplementation on biomarkers of placental function and development in a mouse model of placental insufficiency. |
format | Online Article Text |
id | pubmed-6412879 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64128792019-04-09 Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency King, Julia H. Kwan, Sze Ting (Cecilia) Yan, Jian Jiang, Xinyin Fomin, Vladislav G. Levine, Samantha P. Wei, Emily Roberson, Mark S. Caudill, Marie A. Nutrients Article Dlx3 (distal-less homeobox 3) haploinsufficiency in mice has been shown to result in restricted fetal growth and placental defects. We previously showed that maternal choline supplementation (4X versus 1X choline) in the Dlx3+/− mouse increased fetal and placental growth in mid-gestation. The current study sought to test the hypothesis that prenatal choline would modulate indicators of placenta function and development. Pregnant Dlx3+/− mice consuming 1X (control), 2X, or 4X choline from conception were sacrificed at embryonic (E) days E10.5, E12.5, E15.5, and E18.5, and placentas and embryos were harvested. Data were analyzed separately for each gestational day controlling for litter size, fetal genotype (except for models including only +/− pups), and fetal sex (except when data were stratified by this variable). 4X choline tended to increase (p < 0.1) placental labyrinth size at E10.5 and decrease (p < 0.05) placental apoptosis at E12.5. Choline supplementation decreased (p < 0.05) expression of pro-angiogenic genes Eng (E10.5, E12.5, and E15.5), and Vegf (E12.5, E15.5); and pro-inflammatory genes Il1b (at E15.5 and 18.5), Tnfα (at E12.5) and Nfκb (at E15.5) in a fetal sex-dependent manner. These findings provide support for a modulatory effect of maternal choline supplementation on biomarkers of placental function and development in a mouse model of placental insufficiency. MDPI 2019-02-12 /pmc/articles/PMC6412879/ /pubmed/30759768 http://dx.doi.org/10.3390/nu11020374 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article King, Julia H. Kwan, Sze Ting (Cecilia) Yan, Jian Jiang, Xinyin Fomin, Vladislav G. Levine, Samantha P. Wei, Emily Roberson, Mark S. Caudill, Marie A. Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency |
title | Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency |
title_full | Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency |
title_fullStr | Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency |
title_full_unstemmed | Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency |
title_short | Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency |
title_sort | maternal choline supplementation modulates placental markers of inflammation, angiogenesis, and apoptosis in a mouse model of placental insufficiency |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412879/ https://www.ncbi.nlm.nih.gov/pubmed/30759768 http://dx.doi.org/10.3390/nu11020374 |
work_keys_str_mv | AT kingjuliah maternalcholinesupplementationmodulatesplacentalmarkersofinflammationangiogenesisandapoptosisinamousemodelofplacentalinsufficiency AT kwanszetingcecilia maternalcholinesupplementationmodulatesplacentalmarkersofinflammationangiogenesisandapoptosisinamousemodelofplacentalinsufficiency AT yanjian maternalcholinesupplementationmodulatesplacentalmarkersofinflammationangiogenesisandapoptosisinamousemodelofplacentalinsufficiency AT jiangxinyin maternalcholinesupplementationmodulatesplacentalmarkersofinflammationangiogenesisandapoptosisinamousemodelofplacentalinsufficiency AT fominvladislavg maternalcholinesupplementationmodulatesplacentalmarkersofinflammationangiogenesisandapoptosisinamousemodelofplacentalinsufficiency AT levinesamanthap maternalcholinesupplementationmodulatesplacentalmarkersofinflammationangiogenesisandapoptosisinamousemodelofplacentalinsufficiency AT weiemily maternalcholinesupplementationmodulatesplacentalmarkersofinflammationangiogenesisandapoptosisinamousemodelofplacentalinsufficiency AT robersonmarks maternalcholinesupplementationmodulatesplacentalmarkersofinflammationangiogenesisandapoptosisinamousemodelofplacentalinsufficiency AT caudillmariea maternalcholinesupplementationmodulatesplacentalmarkersofinflammationangiogenesisandapoptosisinamousemodelofplacentalinsufficiency |