Cargando…
Deep Learning for Sensor-Based Rehabilitation Exercise Recognition and Evaluation†
In this paper, a multipath convolutional neural network (MP-CNN) is proposed for rehabilitation exercise recognition using sensor data. It consists of two novel components: a dynamic convolutional neural network (D-CNN) and a state transition probability CNN (S-CNN). In the D-CNN, Gaussian mixture m...
Autores principales: | Zhu, Zheng-An, Lu, Yun-Chung, You, Chih-Hsiang, Chiang, Chen-Kuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412882/ https://www.ncbi.nlm.nih.gov/pubmed/30791648 http://dx.doi.org/10.3390/s19040887 |
Ejemplares similares
-
An Activity Recognition Model Using Inertial Sensor Nodes in a Wireless Sensor Network for Frozen Shoulder Rehabilitation Exercises
por: Lin, Hsueh-Chun, et al.
Publicado: (2015) -
Sensor Data Acquisition and Multimodal Sensor Fusion for Human Activity Recognition Using Deep Learning
por: Chung, Seungeun, et al.
Publicado: (2019) -
AIoT-Enabled Rehabilitation Recognition System—Exemplified by Hybrid Lower-Limb Exercises
por: Lai, Yi-Chun, et al.
Publicado: (2021) -
Personalized Rehabilitation Recognition for Ubiquitous Healthcare Measurements
por: Kan, Yao-Chiang, et al.
Publicado: (2019) -
Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning
por: Nafea, Ohoud, et al.
Publicado: (2021)