Cargando…
A Human Activity Recognition Algorithm Based on Stacking Denoising Autoencoder and LightGBM
Recently, the demand for human activity recognition has become more and more urgent. It is widely used in indoor positioning, medical monitoring, safe driving, etc. Existing activity recognition approaches require either the location information of the sensors or the specific domain knowledge, which...
Autores principales: | Gao, Xile, Luo, Haiyong, Wang, Qu, Zhao, Fang, Ye, Langlang, Zhang, Yuexia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412893/ https://www.ncbi.nlm.nih.gov/pubmed/30813418 http://dx.doi.org/10.3390/s19040947 |
Ejemplares similares
-
Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders
por: Wang, Qu, et al.
Publicado: (2019) -
LGB-Stack: Stacked Generalization
with LightGBM for Highly Accurate Predictions of
Polymer Bandgap
por: Goh, Kai Leong, et al.
Publicado: (2022) -
SAELGMDA: Identifying human microbe–disease associations based on sparse autoencoder and LightGBM
por: Wang, Feixiang, et al.
Publicado: (2023) -
Human activity recognition of children with wearable devices using LightGBM machine learning
por: Csizmadia, Gábor, et al.
Publicado: (2022) -
Predicting Metabolite–Disease Associations Based on LightGBM Model
por: Zhang, Cheng, et al.
Publicado: (2021)