Cargando…

Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders

Accurate stride-length estimation is a fundamental component in numerous applications, such as pedestrian dead reckoning, gait analysis, and human activity recognition. The existing stride-length estimation algorithms work relatively well in cases of walking a straight line at normal speed, but thei...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qu, Ye, Langlang, Luo, Haiyong, Men, Aidong, Zhao, Fang, Huang, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412957/
https://www.ncbi.nlm.nih.gov/pubmed/30781668
http://dx.doi.org/10.3390/s19040840
Descripción
Sumario:Accurate stride-length estimation is a fundamental component in numerous applications, such as pedestrian dead reckoning, gait analysis, and human activity recognition. The existing stride-length estimation algorithms work relatively well in cases of walking a straight line at normal speed, but their error overgrows in complex scenes. Inaccurate walking-distance estimation leads to huge accumulative positioning errors of pedestrian dead reckoning. This paper proposes TapeLine, an adaptive stride-length estimation algorithm that automatically estimates a pedestrian’s stride-length and walking-distance using the low-cost inertial-sensor embedded in a smartphone. TapeLine consists of a Long Short-Term Memory module and Denoising Autoencoders that aim to sanitize the noise in raw inertial-sensor data. In addition to accelerometer and gyroscope readings during stride interval, extracted higher-level features based on excellent early studies were also fed to proposed network model for stride-length estimation. To train the model and evaluate its performance, we designed a platform to collect inertial-sensor measurements from a smartphone as training data, pedestrian step events, actual stride-length, and cumulative walking-distance from a foot-mounted inertial navigation system module as training labels at the same time. We conducted elaborate experiments to verify the performance of the proposed algorithm and compared it with the state-of-the-art SLE algorithms. The experimental results demonstrated that the proposed algorithm outperformed the existing methods and achieves good estimation accuracy, with a stride-length error rate of 4.63% and a walking-distance error rate of 1.43% using inertial-sensor embedded in smartphone without depending on any additional infrastructure or pre-collected database when a pedestrian is walking in both indoor and outdoor complex environments (stairs, spiral stairs, escalators and elevators) with natural motion patterns (fast walking, normal walking, slow walking, running, jumping).