Cargando…

Static and Dynamic Activity Detection with Ambient Sensors in Smart Spaces

Convergence of Machine Learning, Internet of Things, and computationally powerful single-board computers has boosted research and implementation of smart spaces. Smart spaces make predictions based on historical data to enhance user experience. In this paper, we present a low-cost, low-energy smart...

Descripción completa

Detalles Bibliográficos
Autores principales: Shelke, Sagar, Aksanli, Baris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412965/
https://www.ncbi.nlm.nih.gov/pubmed/30781477
http://dx.doi.org/10.3390/s19040804
Descripción
Sumario:Convergence of Machine Learning, Internet of Things, and computationally powerful single-board computers has boosted research and implementation of smart spaces. Smart spaces make predictions based on historical data to enhance user experience. In this paper, we present a low-cost, low-energy smart space implementation to detect static and dynamic human activities that require simple motions. We use low-resolution (4 × 16) and non-intrusive thermal sensors to collect data. We train six machine learning algorithms, namely logistic regression, naive Bayes, support vector machine, decision tree, random forest and artificial neural network (vanilla feed-forward) on the dataset collected in our lab. Our experiments reveal a very high static activity detection rate with all algorithms, where the feed-forward neural network method gives the best accuracy of 99.96%. We also show how data collection methods and sensor placement plays an important role in the resulting accuracy of different machine learning algorithms. To detect dynamic activities in real time, we use cross-correlation and connected components of thermal images. Our smart space implementation, with its real-time properties, can be used in various domains and applications, such as conference room automation, elderly health-care, etc.