Cargando…
UAV Sensor Fault Detection Using a Classifier without Negative Samples: A Local Density Regulated Optimization Algorithm†
Fault detection for sensors of unmanned aerial vehicles is essential for ensuring flight security, in which the flight control system conducts real-time control for the vehicles relying on the sensing information from sensors, and erroneous sensor data will lead to false flight control commands, cau...
Autores principales: | Guo, Kai, Liu, Liansheng, Shi, Shuhui, Liu, Datong, Peng, Xiyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412968/ https://www.ncbi.nlm.nih.gov/pubmed/30781865 http://dx.doi.org/10.3390/s19040771 |
Ejemplares similares
-
A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults
por: Sun, Rui, et al.
Publicado: (2017) -
Optimize the Coverage Probability of Prediction Interval for Anomaly Detection of Sensor-Based Monitoring Series
por: Pang, Jingyue, et al.
Publicado: (2018) -
Fault diagnosis for cooling dehumidifier based on fuzzy classifier optimized by adaptive genetic algorithm
por: Gao, Yunguang, et al.
Publicado: (2022) -
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines
por: Liu, Liansheng, et al.
Publicado: (2016) -
Fault Detection in Wireless Sensor Networks through the Random Forest Classifier
por: Noshad, Zainib, et al.
Publicado: (2019)