Cargando…
Deep Attention Models for Human Tracking Using RGBD
Visual tracking performance has long been limited by the lack of better appearance models. These models fail either where they tend to change rapidly, like in motion-based tracking, or where accurate information of the object may not be available, like in color camouflage (where background and foreg...
Autores principales: | Rasoulidanesh, Maryamsadat, Yadav, Srishti, Herath, Sachini, Vaghei, Yasaman, Payandeh, Shahram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412970/ https://www.ncbi.nlm.nih.gov/pubmed/30781737 http://dx.doi.org/10.3390/s19040750 |
Ejemplares similares
-
AFI-Net: Attention-Guided Feature Integration Network for RGBD Saliency Detection
por: Li, Liming, et al.
Publicado: (2021) -
DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter
por: Yadav, Srishti, et al.
Publicado: (2022) -
Multiview Layer Fusion Model for Action Recognition Using RGBD Images
por: Chalearnnetkul, Pongsagorn, et al.
Publicado: (2018) -
RGBD-Inertial Trajectory Estimation and Mapping for Ground Robots
por: Shan, Zeyong, et al.
Publicado: (2019) -
A Human Activity Recognition System Using Skeleton Data from RGBD Sensors
por: Cippitelli, Enea, et al.
Publicado: (2016)