Cargando…
Fault Identification of Chemical Processes Based on k-NN Variable Contribution and CNN Data Reconstruction Methods
Data-driven fault detection and identification methods are important in large-scale chemical processes. However, some traditional methods often fail to show superior performance owing to the self-limitations and the characteristics of process data, such as nonlinearity, non-Gaussian distribution, an...
Autores principales: | Wang, Guo-Zhu, Li, Jing, Hu, Yong-Tao, Li, Yuan, Du, Zhi-Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413088/ https://www.ncbi.nlm.nih.gov/pubmed/30813310 http://dx.doi.org/10.3390/s19040929 |
Ejemplares similares
-
Fault Diagnosis
of the Dynamic Chemical Process Based
on the Optimized CNN-LSTM Network
por: Chen, Honghua, et al.
Publicado: (2022) -
Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays
por: Yang, Jingli, et al.
Publicado: (2016) -
An Intelligent Fault Diagnosis Method for Bearings with Variable Rotating Speed Based on Pythagorean Spatial Pyramid Pooling CNN
por: Guo, Sheng, et al.
Publicado: (2018) -
The combination model of CNN and GCN for machine fault diagnosis
por: Zhang, Qianqian, et al.
Publicado: (2023) -
CNN Hardware Accelerator for Real-Time Bearing Fault Diagnosis
por: Chung, Ching-Che, et al.
Publicado: (2023)