Cargando…
Adversarial Samples on Android Malware Detection Systems for IoT Systems
Many IoT (Internet of Things) systems run Android systems or Android-like systems. With the continuous development of machine learning algorithms, the learning-based Android malware detection system for IoT devices has gradually increased. However, these learning-based detection models are often vul...
Autores principales: | Liu, Xiaolei, Du, Xiaojiang, Zhang, Xiaosong, Zhu, Qingxin, Wang, Hao, Guizani, Mohsen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413143/ https://www.ncbi.nlm.nih.gov/pubmed/30823597 http://dx.doi.org/10.3390/s19040974 |
Ejemplares similares
-
TLTD: A Testing Framework for Learning-Based IoT Traffic Detection Systems
por: Liu, Xiaolei, et al.
Publicado: (2018) -
Transfer Learning for Image-Based Malware Detection for IoT
por: Panda, Pratyush, et al.
Publicado: (2023) -
Malware detection in Android phones
por: Malik, Sapna
Publicado: (2017) -
Feature Subset Selection for Malware Detection in Smart IoT Platforms
por: Abawajy, Jemal, et al.
Publicado: (2021) -
IoT malware: An attribute-based taxonomy, detection mechanisms and challenges
por: Victor, Princy, et al.
Publicado: (2023)