Cargando…

Extraction and Separation of Eight Ginsenosides from Flower Buds of Panax Ginseng Using Aqueous Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System

Ionic liquids (ILs) are recognized as a possible replacement of traditional organic solvents, and ILs have been widely applied to extract various compounds. The present work aims to extract ginsenosides from Panax ginseng flower buds using aqueous ionic liquid based ultrasonic assisted extraction (I...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Qing, Zhang, Jinsong, Su, Xingguang, Meng, Qingwei, Dou, Jianpeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413155/
https://www.ncbi.nlm.nih.gov/pubmed/30795582
http://dx.doi.org/10.3390/molecules24040778
Descripción
Sumario:Ionic liquids (ILs) are recognized as a possible replacement of traditional organic solvents, and ILs have been widely applied to extract various compounds. The present work aims to extract ginsenosides from Panax ginseng flower buds using aqueous ionic liquid based ultrasonic assisted extraction (IL-UAE). The extraction yields of 1-alkyl-3-methylimidazolium ionic liquids with different anions and alkyl chains were evaluated. The extraction parameters of eight ginsenosides were optimized by utilizing response surface methodology (RSM). The model demonstrated that a high yield of total ginsenosides could be obtained using IL-UAE, and the optimum extraction parameters were 0.23 M [C(4)mim][BF(4)], ultrasonic time of 23 min, temperature of extraction set to 30 °C, and liquid-solid ratio of 31:1. After that, an aqueous biphasic system (ABS) was used to separate ginsenosides further. The nature and concentration of salt, as well as the value of pH in ionic liquid were evaluated, and the optimal conditions (6.0 mL IL extract, 3 g NaH(2)PO(4), and pH 5.0) were obtained. The preconcentration factor was 2.58, and extraction efficiency reached 64.53%. The results indicate that as a simple and efficient method, an IL-UAE-ABS can be considered as a promising method for extracting and separating the natural active compounds from medicinal herbs.